研究生: |
夏萬順 Hsia, Wan-shun |
---|---|
論文名稱: |
大腸桿菌中亞精胺合成酵素與氧化壓力相關性的研究 Studies on the relationships between spermidine synthase and oxidative stress in Escherichia coli |
指導教授: |
黃海美
Huang, Haimei |
口試委員: |
李孟娟
黃海美 高茂傑 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 亞精胺合成酶 、二環己胺 、亞精胺 、氧化壓力 |
外文關鍵詞: | spermidine synthase, dicyclohexylamine, spermidine, oxiative stress |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亞精胺合成酶(spermidine synthase)在大腸桿菌合成亞精胺是相當重要的酵素,其可以催化亞精胺的生合成。在缺乏多胺酸的大腸桿菌中,在VB培養基中加入亞精胺(spermidine)和腐胺(putrescine)可以保護大腸桿菌免於受到雙氧水和氧氣的傷害。此外,近年的報告指出,若在阿拉伯芥中,使亞精胺合成酶過量表現能夠增加阿拉伯芥克服多種環境壓力的傷害,其中,也包含了氧化壓力。根據這些研究,這個研究方向將主要用來觀察亞精胺合成酶和氧化壓力間的關係。
為了研究氧化壓力和亞精胺合成酶的關係,不同濃度雙氧水引起的活性氧化物和大腸桿菌內亞精胺合成酶的多寡,被用來當作觀察這兩者是否相關的一個指標。將大腸桿菌分別以1、 2、或4 mM濃度的雙氧水處理一個小時後,在吸光值的觀測上,可以分別對大腸桿菌產生80.2、 64.7、 和 45.5 %的生長抑制。從連續稀釋方法所得到的菌落生長單位,和控制組比起來,細胞的存活率則降到70.4、 46.7、 17.7 %。而且在亞精胺合成酶含量的觀察上,與控制組相比,大約為控制組的83、 67、 和 50 %。
這個研究也探討了亞精胺合成酶對另一種氧化壓力的關係,活性氮物,不同濃度的亞硝基鐵氰化鈉(SNP)所以起的引起的活氮壓力和大腸桿菌內亞精胺合成酶的多寡,如同先前提過的,在將大腸桿菌分別以2、4、或8 mM濃度的亞硝基鐵氰化鈉處理一個小時後,在吸光值的觀測上,可以分別對大腸桿菌產生69.3、 65.6、 和 58.3 %的生長抑制。從連續稀釋方法所得到的菌落生長單位,和控制組比起來,可以分別對大腸桿菌產 75、 71、 和 31 %的生長抑制。而在亞精胺合成酶含量的觀察上,與控制組相比,大約減少了88、 102、和 59 %。
此外,這個實驗也測試了大腸桿菌在分別以8、12、16 mM濃度的亞精胺合成酶活性抑制劑,二環己胺(dicyclohexylamine),處理一小時候的反應。在將大腸桿菌以8、12、 或16 mM濃度的二環己胺處理一個小時後,在吸光值的觀測上,可以分別對大腸桿菌產生82.9、 58.7、 和 41.7 %的生長抑制。從連續稀釋方法所得到的菌落生長單位,和控制組比起來,和控制組比起來,細胞的存活率則降到72.7、 18.7、 和 4.9 %。在DCHA處理的大腸桿菌中,與控制組相比,在將大腸桿菌處理8 mM 濃度左右的DCHA時,大腸桿菌中亞精胺合成酶含量減少了大約15%。,在12 ~16 mM濃度時,似乎能刺激亞精胺合成酶在大腸桿菌中含量大約增加了60%。在不同生長期的大腸桿菌中,也發現了的亞精胺合成酶含量的改變。主要會隨著在不同培養時間,如培養1、 2 和4 小時,亞精胺合成酶的含量都有顯著的減少。
另外加入4 mM濃度的二環己胺,與2 mM雙氧水處理的大腸桿菌一起培養一個小時,與只有加2 mM雙氧水的控制組相比,則減少了約20%的存活率。這些實驗指出大腸桿菌在雙氧水中的存活率,與亞精胺合成酶的活性在細胞中的含量是有關係的。
Spermidine synthase is an enzyme which catalyzed the biosynthesis of spermidine from putrescine. In the presence of putrescine and spermidine, polyamine deficient mutant E. coli was protected from hydrogen peroxide (H2O2) or oxygen in Vogel-Bonner medium (Chattopadhyay et al., 2003). In addition, recent reports showed that Arabidopsis thaliana with over-expressed spermidine synthase enhance the tolerance to multiple environmental stresses including ROS stress (Kasukabe et al., 2004). According to those report, this study is focused on investigating the relationship between spermidine synthase and oxidative stress.
Various concentrations of H2O2 induced ROS and the intracellular contents of spermidine synthase in E. coli were analyzed. After 1 hour treatment with 1, 2, 4 mM H2O2, the growth inhibition based on optical density at 600 nm was down to 80.2, 64.7, and 45.5 % of untreated control, respectively. The survivability based on colony forming unit (CFU) assay, the percentages of viable E. coli colony were detected decreased to 70.4, 46.7, 17.7 % of untreated control, respectively. And the amount of spermidine synthase decreased to 83, 67, and 50 % of untreated control sample.
The relationship between spermidine synthase and reactive nitrogen species (RNS) was also investigated in this study. Based on optical density at 600 nm, E. coli after 1 hour treatment with 2, 4, 8 mM sodium nitroprusside (SNP) resulted in growth inhibition to 69.3, 65.6, and 58.3 % of that from untreated control, respectively. Based on CFU assay, the percentages of viable E. coli were reduced to 75, 71, 31 % compared to untreated control, respectively. And the amount of spermidine synthase decreased to 88, 102, and 59 % of untreated control.
The response of E. coli after 1 hour treatment with 8, 12, 16 mM of spermidine synthase enzyme inhibitor, dicyclohexylamine (DCHA), was also determined. Based on optical density at 600 nm, 8, 12, 16 mM DCHA treatment resulted in growth inhibition to 82.9, 58.7, and 41.7 % of that from untreated control, respectively. Based on CFU assay, the percentages of viable E. coli were decreased to 72.7, 18.7, 4.9 % compared to untreated control, respectively. And the amount of spermidine synthase was approximately 15% decreased with 8 mM DCHA treatment. However, the amount of spermidine synthase was 60 % increased with 12~16 mM DCHA treatment. Further study investigated that intracellular amount of spermidine synthase at 1, 2, 4 hour incubating time which corresponded to log, late-log and stationary phase was decreased in E. coli culture.
Furthermore, 4 mM non-toxic DCHA co-incubated with 2 mM H2O2 treated E. coli for 1 hour, bacteria growth based in O.D.600 reading from DCHA plus H2O2 co-cultured samples reduced approximately 18% of that from H2O2 treated samples. The results suggest the survivability of E. coli co-incubated with H2O2 was highly correlated to the activity and intracellular amount of spermidine synthase.
Reference
Atlas, R.M. (2010). Handbook of microbiological media, 4th edn (Washington, D.C.
Boca Raton, FL: ASM Press ;
CRC Press/Taylor & Francis).
Bachrach, U., and Cohen, I. (1961). Spermidine in the bacterial cell. J Gen Microbiol 26, 1-9.
Bardocz, S., and White, A. (1999). Polyamines in health and nutrition (Boston: Kluwer Academic Publishers).
Becker, J.V., Mtwisha, L., Crampton, B.G., Stoychev, S., van Brummelen, A.C., Reeksting, S., Louw, A.I., Birkholtz, L.M., and Mancama, D.T. (2010). Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels. BMC genomics 11, 235.
Bitonti, A.J., McCann, P.P., and Sjoerdsma, A. (1982). Restriction of bacterial growth by inhibition of polyamine biosynthesis by using monofluoromethylornithine, difluoromethylarginine and dicyclohexylammonium sulphate. The Biochemical journal 208, 435-441.
Blattner, F.R., Plunkett, G., 3rd, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., et al. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1462.
Bowman, W.H., Tabor, C.W., and Tabor, H. (1973a). Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem 248, 2480-2486.
Bowman, W.H., Tabor, C.W., and Tabor, H. (1973b). Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. The Journal of biological chemistry 248, 2480-2486.
Brooker, R.J. (2009). Genetics : analysis & principles, 3rd edn (New York, N.Y.: McGraw-Hill).
Caruso, A., Pellati, A., Bosi, G., Arena, N., and Stabellini, G. (1994). Effects of spermidine synthase inhibition on cytoskeletal organization in cultured chick embryo fibroblasts. European journal of histochemistry : EJH 38, 245-252.
Chattopadhyay, M.K., Tabor, C.W., and Tabor, H. (2003). Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proceedings of the National Academy of Sciences of the United States of America 100, 2261-2265.
Chattopadhyay, M.K., Tabor, C.W., and Tabor, H. (2009). Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol 191, 5549-5552.
Chiang, S.M., and Schellhorn, H.E. (2012). Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Archives of biochemistry and biophysics.
Dhamdhere, G., Krishnamoorthy, G., and Zgurskaya, H.I. (2010). Interplay between drug efflux and antioxidants in Escherichia coli resistance to antibiotics. Antimicrob Agents Chemother 54, 5366-5368.
Friesen, H., Tanny, J.C., and Segall, J. (1998). Spe3, which encodes spermidine synthase, is required for full repression through NRE(DIT) in Saccharomyces cerevisiae. Genetics 150, 59-73.
Gilroy, C., Olenyik, T., Roberts, S.C., and Ullman, B. (2011). Spermidine synthase is required for virulence of Leishmania donovani. Infection and immunity 79, 2764-2769.
Hamaguchi, K., Iwakiri, T., Imamura, K., Furihata, K., Seto, H., and Otake, N. (1987). Juglorin, a new spermidine synthase inhibitor. The Journal of antibiotics 40, 717-719.
Hamasaki-Katagiri, N., Tabor, C.W., and Tabor, H. (1997). Spermidine biosynthesis in Saccharomyces cerevisae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187, 35-43.
Haugaard, N. (1946). Oxygen poisoning; the relation between inactivation of enzymes by oxygen and essential sulfhydryl groups. The Journal of biological chemistry 164, 265-270.
Hibasami, H., Kawase, M., Tsukada, T., Maekawa, S., Sakurai, M., and Nakashima, K. (1988). 2-Mercaptoethylamine, a competitive inhibitor of spermidine synthase in mammalian cells. FEBS letters 229, 243-246.
Hibasami, H., Tanaka, M., Nagai, J., and Ikeda, T. (1980a). Dicyclohexylamine, a Potent Inhibitor of Spermidine Synthase in Mammalian-Cells. FEBS letters 116, 99-101.
Hibasami, H., Tanaka, M., Nagai, J., and Ikeda, T. (1980b). Dicyclohexylamine, a potent inhibitor of spermidine synthase in mammalian cells. FEBS Lett 116, 99-101.
Hinton, J.C. (1997). The Escherichia coli genome sequence: the end of an era or the start of the FUN? Molecular microbiology 26, 417-422.
Hirsch, M., and Elliott, T. (2005). Stationary-phase regulation of RpoS translation in Escherichia coli. Journal of bacteriology 187, 7204-7213.
Holm, I., Persson, L., Pegg, A.E., and Heby, O. (1989). Effects of S-Adenosyl-1,8-Diamino-3-Thio-Octane and S-Methyl-5'-Methylthioadenosine on Polyamine Synthesis in Ehrlich Ascites-Tumor Cells. Biochemical Journal 261, 205-210.
Igarashi, K., Hara, K., Watanabe, Y., Hirose, S., and Takeda, Y. (1975). Polyamine and magnesium contents and polypeptide synthesis as a function of cell growth. Biochemical and biophysical research communications 64, 897-904.
Igarashi, K., and Kashiwagi, K. (2000a). Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271, 559-564.
Igarashi, K., and Kashiwagi, K. (2000b). Polyamines: mysterious modulators of cellular functions. Biochemical and biophysical research communications 271, 559-564.
Igarashi, K., and Kashiwagi, K. (2006). Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. Journal of biochemistry 139, 11-16.
Igarashi, K., and Kashiwagi, K. (2010). Modulation of cellular function by polyamines. The international journal of biochemistry & cell biology 42, 39-51.
Igarashi, K., Kashiwagi, K., Kishida, K., Watanabe, Y., Kogo, A., and Hirose, S. (1979). Defect in the split proteins of 30-S ribosomal subunits and under-methylation of 16-S ribosomal RNA in a polyamine-requiring mutant of Escherichia coli grown in the absence of polyamines. European journal of biochemistry / FEBS 93, 345-353.
Igarashi, K., Kishida, K., Kashiwagi, K., Tatokoro, I., Kakegawa, T., and Hirose, S. (1981). Relationship between methylation of adenine near the 3' end of 16-S ribosomal RNA and the activity of 30-S ribosomal subunits. European journal of biochemistry / FEBS 113, 587-593.
Imlay, J.A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annual review of biochemistry 77, 755-776.
Jin, Y., Bok, J.W., Guzman-de-Pena, D., and Keller, N.P. (2002). Requirement of spermidine for developmental transitions in Aspergillus nidulans. Molecular microbiology 46, 801-812.
Jung, I.L., and Kim, I.G. (2003). Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochemical and biophysical research communications 301, 915-922.
Kashiwagi, K., and Igarashi, K. (1988). Adjustment of polyamine contents in Escherichia coli. J Bacteriol 170, 3131-3135.
Kashiwagi, K., Innami, A., Zenda, R., Tomitori, H., and Igarashi, K. (2002). The ATPase activity and the functional domain of PotA, a component of the sermidine-preferential uptake system in Escherichia coli. The Journal of biological chemistry 277, 24212-24219.
Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., and Tachibana, S. (2004). Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & cell physiology 45, 712-722.
Khan, A.U., Mei, Y.H., and Wilson, T. (1992). A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A 89, 11426-11427.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Liu, C., and Coward, J.K. (1991). Stereospecific Synthesis of (R)-S-Adenosyl-1,8-Diamino-3-Thiooctane and (S)-S-Adenosyl-1,8-Diamino-3-Thiooctane, a Potent Inhibitor of Polyamine Biosynthesis - Comparison of Asymmetric Induction Vs Enantiomeric Synthesis. Journal of medicinal chemistry 34, 2094-2101.
Maas, W.K. (1972). Mapping of genes involved in the synthesis of spermidine in Escherichia coli. Molecular & general genetics : MGG 119, 1-9.
Mattila, T., Honkanen-Buzalski, T., and Poso, H. (1984a). Reversible inhibition of bacterial growth after specific inhibition of spermidine synthase by dicyclohexylamine. Biochem J 223, 823-830.
Mattila, T., Honkanen-Buzalski, T., and Poso, H. (1984b). Reversible inhibition of bacterial growth after specific inhibition of spermidine synthase by dicyclohexylamine. The Biochemical journal 223, 823-830.
Michan, C., Manchado, M., Dorado, G., and Pueyo, C. (1999). In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress. Journal of bacteriology 181, 2759-2764.
Miyamoto, S., Kashiwagi, K., Ito, K., Watanabe, S., and Igarashi, K. (1993). Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Archives of biochemistry and biophysics 300, 63-68.
Moore, R.C., and Boyle, S.M. (1991). Cyclic AMP inhibits and putrescine represses expression of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. J Bacteriol 173, 3615-3621.
Morgan, D.M. (1999). Polyamines. An overview. Molecular biotechnology 11, 229-250.
Morris, D.R., and Fillingame, R.H. (1974). Regulation of amino acid decarboxylation. Annu Rev Biochem 43, 303-325.
Paulin, L. (1986). The effects of 1-aminooxy-3-aminopropane and S-(5'-deoxy-5'-adenosyl)methylthioethylhydroxylamine on ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase from Escherichia coli. FEBS letters 202, 323-326.
Paulin, L., Lindberg, L.A., and Poso, H. (1986). Reversible inhibition of flagella formation after specific inhibition of spermidine synthesis by dicyclohexylamine in Pseudomonas aeruginosa. Antonie van Leeuwenhoek 52, 483-490.
Paulin, L., Vehmaanpera, J., Nykanen, I., and Poso, H. (1983). GTP-insensitive ornithine decarboxylase in acetobacteria able to synthesize spermine. Biochem Biophys Res Commun 114, 779-784.
Pegg, A.E. (1986). Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234, 249-262.
Pegg, A.E. (1988). Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer research 48, 759-774.
Pegg, A.E., Bitonti, A.J., McCann, P.P., and Coward, J.K. (1983a). Inhibition of bacterial aminopropyltransferases by S-adenosyl-1,8-diamino-3-thiooctane and by dicyclohexylamine. FEBS letters 155, 192-196.
Pegg, A.E., Bitonti, A.J., McCann, P.P., and Coward, J.K. (1983b). Inhibition of bacterial aminopropyltransferases by S-adenosyl-1,8-diamino-3-thiooctane and by dicyclohexylamine. FEBS Lett 155, 192-196.
Roberts, S.C., Jiang, Y., Jardim, A., Carter, N.S., Heby, O., and Ullman, B. (2001). Genetic analysis of spermidine synthase from Leishmania donovani. Molecular and biochemical parasitology 115, 217-226.
Saito, M., and Nakatsugawa, K. (1994). Increased susceptibility of liver to lipid peroxidation after ingestion of a high fish oil diet. International journal for vitamin and nutrition research Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Journal international de vitaminologie et de nutrition 64, 144-151.
Schwartz, C.E., Wang, X., Stevenson, R.E., and Pegg, A.E. (2011). Spermine synthase deficiency resulting in X-linked intellectual disability (Snyder-Robinson syndrome). Methods Mol Biol 720, 437-445.
Shah, P., and Swiatlo, E. (2008). A multifaceted role for polyamines in bacterial pathogens. Molecular microbiology 68, 4-16.
Shirahata, A., Morohoshi, T., and Samejima, K. (1988). Trans-4-Methylcyclohexylamine - a Potent New Inhibitor of Spermidine Synthase. Chemical & pharmaceutical bulletin 36, 3220-3222.
Suzuki, Y.J., Forman, H.J., and Sevanian, A. (1997). Oxidants as stimulators of signal transduction. Free radical biology & medicine 22, 269-285.
Tabor, C.W., and Tabor, H. (1983). Putrescine aminopropyltransferase (Escherichia coli). Methods in enzymology 94, 265-270.
Tabor, C.W., and Tabor, H. (1984). Polyamines. Annu Rev Biochem 53, 749-790.
Tabor, C.W., and Tabor, H. (1985a). Polyamines in microorganisms. Microbiol Rev 49, 81-99.
Tabor, C.W., and Tabor, H. (1985b). Polyamines in microorganisms. Microbiological reviews 49, 81-99.
Tabor, C.W., and Tabor, H. (1987). The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase. The Journal of biological chemistry 262, 16037-16040.
Tabor, C.W., Tabor, H., and Xie, Q.W. (1986). Spermidine synthase of Escherichia coli: localization of the speE gene. Proceedings of the National Academy of Sciences of the United States of America 83, 6040-6044.
Tabor, H., Rosenthal, S.M., and Tabor, C.W. (1958). The biosynthesis of spermidine and spermine from putrescine and methionine. The Journal of biological chemistry 233, 907-914.
Tabor, H., and Tabor, C.W. (1969). Formation of 1,4-diaminobutane and of spermidine by an ornithine auxotroph of Escherichia coli grown on limiting ornithine or arginine. The Journal of biological chemistry 244, 2286-2292.
Tholl, D., Harms, R., Ludwig, A., and Kaiser, A. (1998). Retarded growth of an Escherichia coli mutant deficient in spermidine synthase can be unspecifically repaired by addition of various polyamines. World J Microb Biot 14, 857-863.
Tkachenko, A.G., Akhova, A.V., Shumkov, M.S., and Nesterova, L.Y. (2011). Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res Microbiol.
Tkachenko, A.G., and Nesterova, L.Y. (2003). Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry Biokhimiia 68, 850-856.
Wallace, H.M., Fraser, A.V., and Hughes, A. (2003). A perspective of polyamine metabolism. The Biochemical journal 376, 1-14.
Wang, J.Y., Casero, R.A., and SpringerLink ebooks - Biomedical and Life Sciences (2006) (2006). Polyamine cell signaling physiology, pharmacology, and cancer research (Totowa, N.J.: Humana Press).
Watanabe, S., Kusama-Eguchi, K., Kobayashi, H., and Igarashi, K. (1991). Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. The Journal of biological chemistry 266, 20803-20809.
Wen, X.P., Pang, X.M., Matsuda, N., Kita, M., Inoue, H., Hao, Y.J., Honda, C., and Moriguchi, T. (2008). Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic research 17, 251-263.
Wright, J.M., Satishchandran, C., and Boyle, S.M. (1986). Transcription of the speC (ornithine decarboxylase) gene of Escherichia coli is repressed by cyclic AMP and its receptor protein. Gene 44, 37-45.
Xie, Q.W., Tabor, C.W., and Tabor, H. (1989a). Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the speED operon. J Bacteriol 171, 4457-4465.
Xie, Q.W., Tabor, C.W., and Tabor, H. (1989b). Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the speED operon. Journal of bacteriology 171, 4457-4465.
Xie, Q.W., Tabor, C.W., and Tabor, H. (1993). Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli. Gene 126, 115-117.
Yohannes, E., Thurber, A.E., Wilks, J.C., Tate, D.P., and Slonczewski, J.L. (2005). Polyamine stress at high pH in Escherichia coli K-12. BMC microbiology 5, 59.
Yoshida, M., Kashiwagi, K., Kawai, G., Ishihama, A., and Igarashi, K. (2002). Polyamines enhance synthesis of the RNA polymerase sigma 38 subunit by suppression of an amber termination codon in the open reading frame. The Journal of biological chemistry 277, 37139-37146.
Zappia, V., Cacciapuoti, G., Pontoni, G., and Oliva, A. (1980a). Mechanism of propylamine-transfer reactions. Kinetic and inhibition studies on spermidine synthase from Escherichia coli. The Journal of biological chemistry 255, 7276-7280.
Zappia, V., Cacciapuoti, G., Pontoni, G., and Oliva, A. (1980b). Mechanism of propylamine-transfer reactions. Kinetic and inhibition studies on spermidine synthase from Escherichia coli. J Biol Chem 255, 7276-7280.
Zhou, X., Chua, T.K., Tkaczuk, K.L., Bujnicki, J.M., and Sivaraman, J. (2010). The crystal structure of Escherichia coli spermidine synthase SpeE reveals a unique substrate-binding pocket. Journal of structural biology 169, 277-285.