簡易檢索 / 詳目顯示

研究生: 郭奇龍
Kuo, Chi-Lung
論文名稱: 結合統計方法之五軸側銑路徑最佳化
Tool Path Optimization in 5-Axis Flank Milling by Integrating Statistical Methods
指導教授: 瞿志行
Chu, Chih-Hsing
口試委員: 高永洲
陸元平
丁慶榮
林棋瑋
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 五軸加工刀具路徑規劃側銑加工類電磁演算法抽樣技術反應曲面法
外文關鍵詞: 5-Axis Machining, Tool Path Planning, Flank Milling, Electromagnetism-Like Algorithm, Sampling Techniques, Response Surface Methodology
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 五軸側銑被廣泛應用於直紋曲面的加工,包括汽車、航太、模具與能源等產業的關鍵零件。其刀具路徑規劃能轉換為數學規劃問題,透過全域最佳化演算法求解,藉此降低曲面的加工誤差。然而轉換後的問題具有高維度、高度非線性的特性,以往研究嘗試使用粒子群最佳化演算法、遺傳演算法、螞蟻演算法等方法,然而求解過程的計算效率,或是收斂解的品質仍然不佳。有鑒於此,本研究基於統計相關方法,針對直紋曲面的五軸側銑加工,發展進階式刀具路徑規劃方法,以提出有效的解決方案。目的為簡化搜尋空間提高計算效率,並改善最佳解的品質。分別完成「以類電磁演算法為基之路徑規劃」、「以抽樣技術為基之迭代式路徑規劃」、「多層次簡化解空間」與「基於公差分布之路徑規劃」等具體工作。根據代表性曲面產生的刀具路徑,進行模擬測試,驗證提出方法的效能。本研究兼具學理創新與應用價值,發揮基於全域最佳化之路徑規劃的優勢,不僅有效控制加工曲面的誤差,亦提供新穎的路徑規劃模式,提升複雜幾何的製造技術水準。


    5-axis flank machining has received much attention in various industries since the late 90s. This advanced machining operation is particularly suitable in manufacturing complex components such as turbine blades, compressors, molds, and automobile as well as aerospace structure parts. With two rotational degrees of freedom in the cutter motion, 5-axis flank machining offers superior shaping capability and reduces part handling tasks compared to traditional 3-axis machining. However, tool path planning becomes complicated, as the cutter is likely to collide with objects in the machining environment. Past studies tried to use meta-heuristic methods to solve this problem, such as particle swarm optimization, genetic algorithm, and ant colony optimization, but the search process is lack of efficiency and the solution quality is sometimes not acceptable. Thus, this research develops advanced tool path planning methods based on statistical techniques and completes the following tasks: “Electromagnetism-Like Algorithms for Optimized Tool Path Planning,” “Iterative Optimization of Tool Path Planning by Integrating Sampling Techniques,” “Multilevel Simplification of Solution Space in 5-Axis Flank Machining,” and “ Tool Path Planning based on Distribution of Tolerances.” Simulation results of representative test surfaces validate the effectiveness of the proposed methods. This work provides a feasible approach to controlling machining errors, which enhances the practical values of 5-axis CNC machining technologies.

    摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論與文獻探討 1 1.1 研究背景 1 1.2文獻探討 3 1.2.1 刀具路徑規劃 3 1.2.2 統計方法於刀具路徑規劃之應用 5 1.2.3 過往研究限制 5 1.3 研究目的 6 第二章 刀具路徑產生編碼與誤差計算 8 2.1刀具路徑編碼 8 2.2 切削誤差估計 12 2.3 切削限制 12 第三章 以類電磁演算法為基之路徑規劃 14 3.1 類電磁演算法 (Electromagnetism-Like Algorithm, EM) 14 3.1.1 產生起始解 (Initialize) 15 3.1.2 區域搜尋 (Local) 15 3.1.3 計算電磁力 (CalcF) 17 3.1.4 移動粒子 (Move) 18 3.2 簡化式類電磁演算法 18 3.3 篩選變化解類電磁演算法 19 同步擾動近似演算法 20 3.4 測試結果 22 3.5小結 28 第四章 以抽樣技術為基之迭代式路徑規劃 29 4.1 抽樣 (Sampling) 30 4.1.1簡單隨機抽樣法 30 4.1.2分層抽樣法 31 4.2篩選顯著因子 (Screening Factors) 32 4.3 搜尋 (Searching) 33 4.4 迭代 (Cycle) 33 4.5 測試結果與分析 34 4.6小結 46 第五章 多層次簡化解空間 47 5.1 反應曲面法 (Response Surface Methodology, RSM) 51 5.2克利金法 (Kriging) 52 5.3測試結果 53 第六章 基於公差分布之五軸側銑路徑規劃 65 6.1引言 65 6.2目標函數定義 65 6.3 研究流程與實驗結果 66 6.4 測試結果與分析 67 6.5 小結 81 第七章 結論與未來研究 83 7.1 研究成果總結 83 7.2未來研究工作 84 參考文獻 86 附錄一 八個代表性測試曲面之圖示與特徵設定 89 附錄二 八個代表性測試曲面之控制點 90

    [1] Chu, C. H. and Chen, J. T. “Tool Path Planning for 5-Axis Flank Milling with Developable Surface Approximation,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 7-8, pp. 707-713, 2006.
    [2] Harik, R. F., Gong, H. and Bernard, A. “5-Axis Flank Milling: A State-of-the-art Review,” Computer-Aided Design, Vol. 45, No. 3, pp. 796-808, 2013.
    [3] Bohez, E. L. J., Senadhera, S. D. R., Pole, K., Duflou, J. R. and Tar. T. “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp.422-436, 1997.
    [4] Liu, X. W. “Five-Axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, No. 12, pp. 887-894, 1995.
    [5] Tsay, D. M. and Her, M. J. “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, Vol. 123, No. 4, pp. 731-738, 2001.
    [6] Bedi, S., Mann, S. and Menzel, C. “Flank Milling with Flat End Milling Cutters,” Computer Aided Design, Vol. 35, No. 3, pp. 293-300, 2003.
    [7] Menzel, C., Bedi, S. and Mann, S. “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, No. 3, pp. 289-296, 2004.
    [8] Wu, P. H., Li, Y. W. and Chu, C. H. “Tool Path Planning for 5-Axis Flank Milling Based on Dynamic Programming Techniques,” International Journal of Machine Tools and Manufacture, pp. 1224-1233, 2008.
    [9] Chu, C. H., Lee, C. T., Tien, K. W. and Ting, C. J. “Efficient Tool Path Planning for 5-Axis Flank Milling of Ruled Surfaces Using Ant Colony System Algorithms,” International Journal of Production Research, Vol. 49, No. 6, pp. 1557–1574, 2010.
    [10] Zhu, L. M., Zheng, G., Ding, H. and Xiong, Y. L. “Global Optimization of Tool Path for Five-Axis Flank Milling with a Conical Cutter,” Computer-Aided Design, Vol. 42, No. 10, pp. 903-910, 2010.
    [11] Chu, C. H. and Hsieh, H. T. “Generation of Reciprocating Tool Motion in 5-Axis Flank Milling based on PSO,” Journal of Intelligent Manufacturing, Vol. 23, No. 5, 2010.
    [12] Hsieh, H. T., Tsai, Y. C. and Chu, C. H. “Multi-Pass Progressive Tool Path Planning in Five-Axis Flank Milling by Particle Swarm Optimization,” International Journal of Computer Integrated Manufacturing, Vol. 26, No. 10, pp. 977-987, 2013.
    [13] Kiridena, V. S. B., and Ferreira, P. M. “Parameter Estimation and Model Verification of First Order Quasistatic Error Model for Three-Axis Machining Centers,” International Journal of Machine Tools and Manufacture, Vol. 34, No. 1, 101-125, 1994.
    [14] 謝欣達,基於粒子群演算法之五軸側銑路徑規劃,清華大學工業工程與工程管理學系,博士論文,2014。
    [15] Hsieh, H. T. and Chu, C. H. “PSO-based Tool Path Planning for 5-Axis Flank Milling Accelerated by GPU,” International Journal of Computer Integrated Manufacturing, Vol. 24, No. 7, pp. 676-687, 2010.
    [16] Hsieh, H. T. and Chu, C. H. “Improving tool path planning in 5-axis flank milling of ruled surfaces using advanced PSO algorithms,” Robotics & Computer Integrated Manufacturing, Vol. 29, No. 3, pp. 3-11, 2013.
    [17] Birbil, Ş. İ. and Fang, S. C. “An Electromagnetism-Like Mechanism for Global Optimization,” Journal of Global Optimization, Vol. 25, No. 3, pp. 263-282, 2003.
    [18] Zhang, C., Li, X., Gao, L. and Wu, Q. “An Improved Electromagnetism-Like Mechanism Algorithm for Constrained Optimization,” Expert Systems with Applications, Vol. 40, No.14, pp. 5621-5634, 2013.
    [19] Spall, J. C., “Simultaneous Perturbation Stochastic Approximation,” IEEE Transactions on Automatic Control, pp. 332-341, 1992.
    [20] Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E. and Tourangeau, R., Survey Methodology, John Wiley & Sons, 2013.
    [21] Saad, Y., Iterative Methods for Sparse Linear Systems. Siam, 2003
    [22] Wu, C. F. and Hamada, M. S., Experiments: Planning, Analysis and Optimization, 2nd Edition, Wiley, pp.356-412, 2009.
    [23] Drobnic, B., Sekavcnik, M. and Oman, J. “Use of the Kriging Method in Determining the Properties of Gases in Large Channels,” International Journal of Thermal Sciences, Vol. 48, No. 10, pp. 1901-1907, 2009.
    [24] Liu, L. J. S. and Rossini, A. J. “Use of the Kriging Models to Predict 12-Hour Mean Ozone Concentrations in Metropolitan Toronto - A Pilot Study,” Environment International, Vol. 22, No. 6, pp. 677-692, 1996.
    [25] 蔡易君,五軸側銑最佳化路徑規劃之改善,清華大學工業工程與工程管理學系,碩士論文,2011。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE