研究生: |
賴柏顥 Po-Hao, Lai |
---|---|
論文名稱: |
新型光聚合玻尿酸傷口敷料之研發 The Study of Photocurable Hyaluronic Acid-Based Wound Dressings and its Applications in 3D-Printing Technology |
指導教授: |
王潔
Wang, Jane |
口試委員: |
王竹方
Wang, Chu-Fang 林事瞱 Lin, Shih-Yeh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 傷口敷料 、玻尿酸 、3D列印 、光聚合高分子 |
外文關鍵詞: | Wound dressing, Hyaluronic acid, 3D-printing, Photocurable polymer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於皮膚是人體最大的器官,而皮膚傷口對公眾健康的威脅日益嚴重,因此開發有效且具有促進傷口癒合的傷口敷料是十分重要的。然而,目前常見的傷口敷料仍然有著各種問題需要克服,包括傷口癒合成效不佳或宿主組織的不良貼合。在此論文研究中,通過3D列印技術製成了以玻尿酸(HA)為基底的傷口敷料,用來解決這些問題。 玻尿酸與可光固化的生物相容性高分子聚合物(甲基丙烯酸明膠(GelMA)或聚(乙二醇)二丙烯酸酯(PEGDA))混合,用來作為3D列印的生物墨水。在這項研究中,擠壓式生物3D列印機( Extrusion bioprinter, BioX) 和數位光處理積層3D列印機(Digital Light Processing- Additive Manufacturing, DLP-AM)都被使用於製造傷口敷料。由於玻尿酸有著高功效促進傷口癒合過程的能力,因此提升玻尿酸於傷口敷料中的比例至關重要。同時,為了確保3D列印機台的可列印性,維持足夠量的光固化高分子比例也十分重要。在混合較高量的光固化生物可相容高分子和較高量的玻尿酸之間存在權衡,因此在可列印材料中產生高玻尿酸含量組成是十分困難的。然而,在這項研究中,我們的3D列印傷口敷料中所含的玻尿酸含量可高達16.7 wt. %,遠高於大多數的產品。另外,於流變學的測試中,經由流變儀的偵測,我們的傷口敷料被證明其顯示出出色的剪切稀化效果(Shear thinning effect)和適當的粘度,是適用於擠壓式生物3D列印機的生物墨水。此外,我們的傷口敷料被證明與人體皮膚的機械性質相似。同時,高膨潤率表明此玻尿酸傷口敷料有吸收傷口滲出組織液的強大功效。最後,玻尿酸釋放檢測和細胞活性測試證明我們的材料是具有高生物相容性的生物主動性傷口敷料(Bioactive dressings),使其成為組織工程中的理想傷口敷料。從以上結果來看,這些以玻尿酸為基底的3D列印材料顯示出製成傷口敷料的潛力,並且值得在臨床醫學中作進一步研究和利用。
As skin is the largest organ in human body and skin wounds are a major growing threat for public health, it is essential to create skin substitutes. However, currently wound dressings often suffer from a variety of problems including wound contraction and poor integration with host tissue. In this project, hyaluronic acid (HA)-based wound dressings are fabricated by 3D-printing technology to solve these problems. HA is mixed with photocurable and biocompatible polymers, Gelatin methacrylate (GelMA) or poly (ethanol glycol) diacrylate (PEGDA), as the bioink for 3D-printing. In this study, extrusion bioprinter, BioX, and DLP-AM printer are both used to fabricate wound dressings. In order to accelerate the wound healing process of a skin wound, it is the purpose of this work to create a bioink with high HA composition, as HA has previously been reported as a crucial accelerant for wound regeneration. Meanwhile, it is important to make sure the printability of the bioinks created. There is a trade-off between mixing higher amount of photocurable polymer and higher amount of HA, making it difficult to achieve high HA composition in printable materials. Nevertheless, in this study, up to 16.7 wt.% of HA is contained in our 3D-printed dressing which is significantly higher than most common products. Additionally, it is proven that our dressing materials, which show a great shear thinning effect and proper viscosities in rheology tests, are suitable bioinks for extrusion bioprinters. Moreover, our wound dressings are proven to match the mechanical properties of human skin. Also, the high swelling ratio indicates the great ability of our materials to absorb tissue fluid exuded from the wound. Finally, the detection of HA released and the cell viability test prove our materials to be bioactive wound dressings with high biocompatibility, making them great candidates for tissue engineering. From the above results, these HA-based materials show promising potential to create wound dressings and are worth further investigation and utilization in clinical practice.
1. Chen, Shixuan, et al. "A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition." Journal of Materials Chemistry B 3.33 (2015): 6798-6804.
2. Brandner, J. M., and J. M. Jensen. "The skin: an indispensable barrier." Exp Dermatol 17 (2008): 1063-72.
3. Madison KC. Barrier function of the skin: ‘la raison d”etre’ of the epidermis. J. Invest. Dermatol. (2003), 121(2), 231–241.
4. Enoch, Stuart, and David John Leaper. "Basic science of wound healing." Surgery (Oxford) 26.2 (2008): 31-37..
5. Sen, Chandan K., et al. "Human skin wounds: a major and snowballing threat to public health and the economy." Wound repair and regeneration 17.6 (2009): 763-771.
6. National Trauma Insitute. Trauma statistics: https://www.nattrauma.org/what-is-trauma/trauma-statistics-facts/
7. Tricco, Andrea C., et al. "A systematic review of cost-effectiveness analyses of complex wound interventions reveals optimal treatments for specific wound types." BMC medicine13.1 (2015): 90.
8. He, Peng, et al. "Bioprinting of skin constructs for wound healing." Burns & trauma 6.1 (2018).
9. Hop, M. Jenda, et al. "Costs of burn care: a systematic review." Wound repair and regeneration 22.4 (2014): 436-450.
10. Chen, Shixuan, et al. "Recent advances in electrospun nanofibers for wound healing." Nanomedicine 12.11 (2017): 1335-1352.
11. Mickelson, Megan A., Christoph Mans, and Sara A. Colopy. "Principles of wound management and wound healing in exotic pets." Veterinary Clinics: Exotic Animal Practice 19.1 (2016): 33-53.
12. Mehrtash, Moein, Rahim Mohammadi, and Rahim Hobbenaghi. "Effect of adipose derived nucleated cell fractions with chitosan biodegradable film on wound healing in rats." Wound Medicine10 (2015): 1-8.
13. Eming, Sabine A., Paul Martin, and Marjana Tomic-Canic. "Wound repair and regeneration: mechanisms, signaling, and translation." Science translational medicine 6.265 (2014): 265sr6-265sr6.
14. Horn, Susan D., et al. "Development of a wound healing index for patients with chronic wounds." Wound Repair and Regeneration 21.6 (2013): 823-832.
15. Werdin, Frank, et al. "Evidence-based management strategies for treatment of chronic wounds." Eplasty 9 (2009).
16. Li, Jie, Juan Chen, and Robert Kirsner. "Pathophysiology of acute wound healing." Clinics in dermatology 25.1 (2007): 9-18.
17. Martin, Paul. "Wound healing--aiming for perfect skin regeneration." Science 276.5309 (1997): 75-81.
18. Shaw, Tanya J., and Paul Martin. "Wound repair at a glance." Journal of cell science 122.18 (2009): 3209-3213.
19. Heng, Madalene CY. "Wound healing in adult skin: aiming for perfect regeneration." International journal of dermatology 50.9 (2011): 1058-1066.
20. Korting, H. C., C. Schöllmann, and R. J. White. "Management of minor acute cutaneous wounds: importance of wound healing in a moist environment." Journal of the European Academy of Dermatology and Venereology 25.2 (2011): 130-137.
21. Boateng, Joshua S., et al. "Wound healing dressings and drug delivery systems: a review." Journal of pharmaceutical sciences97.8 (2008): 2892-2923.
22. C.J. Knill, J.F. Kennedy, J. Mistry, M. Miraftab, G. Smart, M.R. Groocock, H.J. Williams, Carbohydrate Polymers, 55 (2004) 65-76.
23. S.-Y. Ong, J. Wu, S.M. Moochhala, M.-H. Tan, J. Lu, Biomaterials, 29 (2008) 4323-4332.
24. S. Sarabahi, Indian Journal of Plastic Surgery : Official Publication of the Association of Plastic Surgeons of India, 45 (2012) 379-387.
25. M.A. Khalil, A.A. Ebade, M.S. Abdel Azeem, Egyptian Journal of Anaesthesia, 29 (2013) 41-45.
26. Abdel-Rahman, Rasha. "New wound dressing based on chitosan/hyaluronan biopolymers." (2016).
27. A.M. Abdel-Mohsen, R. Hrdina, L. Burgert, G. Krylová, R.M. Abdel-Rahman, A. Krejčová, M. Steinhart, L. Beneš, Carbohydrate Polymers, 89 (2012) 411-422.
28. M. Rezvanian, M.C.I.M. Amin, S.-F. Ng, Carbohydrate Polymers, 137 (2016) 295-304.
29. Abrigo, Martina, Sally L. McArthur, and Peter Kingshott. "Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects." Macromolecular bioscience 14.6 (2014): 772-792.
30. MacNeil, Sheila. "Progress and opportunities for tissue-engineered skin." Nature 445.7130 (2007): 874-880.
31. Boateng, Joshua S., et al. "Wound healing dressings and drug delivery systems: a review." Journal of pharmaceutical sciences97.8 (2008): 2892-2923.
32. Murphy, Sean V., and Anthony Atala. "3D bioprinting of tissues and organs." Nature biotechnology 32.8 (2014): 773.
33. Mandrycky, Christian, et al. "3D bioprinting for engineering complex tissues." Biotechnology advances 34.4 (2016): 422-434.
34. Koch, Lothar, et al. "Skin tissue generation by laser cell printing." Biotechnology and bioengineering 109.7 (2012): 1855-1863.
35. Zhang AP, Qu X, Soman P, Hribar KC, Lee JW, Chen S, et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater. 2012;24(31):4266–70.
36. Zhu, Wei, et al. "3D printing of functional biomaterials for tissue engineering." Current opinion in biotechnology 40 (2016): 103-112.
37. Tuan, Rocky S., Genevieve Boland, and Richard Tuli. "Adult mesenchymal stem cells and cell-based tissue engineering." Arthritis Res Ther 5.1 (2002): 32.
38. Mandrycky, Christian, et al. "3D bioprinting for engineering complex tissues." Biotechnology advances 34.4 (2016): 422-434.
39. Sultan, Sahar, et al. "3D printing of nano-cellulosic biomaterials for medical applications." Current Opinion in Biomedical Engineering 2 (2017): 29-34.
40. Streifel, Benjamin C., et al. "Hemostatic and absorbent PolyHIPE–kaolin composites for 3D printable wound dressing materials." Macromolecular bioscience 18.5 (2018): 1700414.
41. Muwaffak, Zaid, et al. "Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings." International journal of pharmaceutics 527.1-2 (2017): 161-170.
42. Intini, Claudio, et al. "3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats." Carbohydrate polymers 199 (2018): 593-602.
43. Cui, Xiaofeng, et al. "Direct human cartilage repair using three-dimensional bioprinting technology." Tissue Engineering Part A18.11-12 (2012): 1304-1312.
44. Xu, Tao, et al. "Inkjet printing of viable mammalian cells." Biomaterials 26.1 (2005): 93-99.
45. Guillotin, Bertrand, et al. "Laser assisted bioprinting of engineered tissue with high cell density and microscale organization." Biomaterials 31.28 (2010): 7250-7256.
46. Pepper, Matthew E., et al. "Cell settling effects on a thermal inkjet bioprinter." 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011.
47. Nishiyama, Yuichi, et al. "Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology." Journal of biomechanical engineering 131.3 (2009).
48. Arai, Kenichi, et al. "Three-dimensional inkjet biofabrication based on designed images." Biofabrication 3.3 (2011): 034113.
49. Khalil, Saif, and Wei Sun. "Biopolymer deposition for freeform fabrication of hydrogel tissue constructs." Materials Science and Engineering: C 27.3 (2007): 469-478.
50. Nair, Kalyani, et al. "Characterization of cell viability during bioprinting processes." Biotechnology Journal: Healthcare Nutrition Technology 4.8 (2009): 1168-1177.
51. Skardal, Aleksander. "Bioprinting essentials of cell and protein viability." Essentials of 3D Biofabrication and Translation. Academic Press, 2015. 1-17.
52. Ferris, Cameron J., et al. "Bio-ink for on-demand printing of living cells." Biomaterials Science 1.2 (2013): 224-230.
53. Guvendiren, Murat, Hoang D. Lu, and Jason A. Burdick. "Shear-thinning hydrogels for biomedical applications." Soft matter 8.2 (2012): 260-272.
54. Kolesky, David B., et al. "3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs." Advanced materials26.19 (2014): 3124-3130.
55. Hornbeck, Larry J. "Current status of the digital micromirror device (DMD) for projection television applications." Proceedings of IEEE International Electron Devices Meeting. IEEE, 1993.
56. Hornbeck, Larry J. "Digital light processing for high-brightness high-resolution applications." Projection Displays III. Vol. 3013. International Society for Optics and Photonics, 1997.
57. Gibson, Ian, David W. Rosen, and Brent Stucker. Additive manufacturing technologies. Vol. 17. New York: Springer, 2014.
58. Schultz, Gregory S., et al. "Wound bed preparation and a brief history of TIME." International wound journal 1.1 (2004): 19-32.
59. Schultz, Gregory S., et al. "Wound bed preparation: a systematic approach to wound management." Wound repair and regeneration 11 (2003): S1-S28.
60. Vermeulen, H., et al. "Systematic review of dressings and topical agents for surgical wounds healing by secondary intention." British Journal of Surgery: Incorporating European Journal of Surgery and Swiss Surgery 92.6 (2005): 665-672.
61. Fraser, J. Robert E., Torvard C. Laurent, and U. B. G. Laurent. "Hyaluronan: its nature, distribution, functions and turnover." Journal of internal medicine 242.1 (1997): 27-33.
62. Kogan, Grigorij, et al. "Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications." Biotechnology letters 29.1 (2007): 17-25.
63. Vincent, Thierry, et al. "Hyaluronan, a major non‐protein glycosaminoglycan component of the extracellular matrix in human bone marrow, mediates dexamethasone resistance in multiple myeloma." British journal of haematology 121.2 (2003): 259-269.
64. Boeriu, Carmen G., et al. "Production methods for hyaluronan." International Journal of Carbohydrate Chemistry 2013 (2013).
65. Yung, Susan, et al. "The source and possible significance of hyaluronan in the peritoneal cavity." Kidney international 46.2 (1994): 527-533..
66. Stern, Robert, Akira A. Asari, and Kazuki N. Sugahara. "Hyaluronan fragments: an information-rich system." European journal of cell biology 85.8 (2006): 699-715.
67. Singh, Anirudha, et al. "Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid." Nature materials 13.10 (2014): 988-995.
68. Kenne, Lennart, et al. "Modification and cross-linking parameters in hyaluronic acid hydrogels—definitions and analytical methods." Carbohydrate polymers 91.1 (2013): 410-418.
69. Kogan, Grigorij, et al. "Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications." Biotechnology letters 29.1 (2007): 17-25.
70. Tzircotis, George, Rick F. Thorne, and Clare M. Isacke. "Chemotaxis towards hyaluronan is dependent on CD44 expression and modulated by cell type variation in CD44-hyaluronan binding." Journal of cell science 118.21 (2005): 5119-5128.
71. Teriete, Peter, et al. "Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44." Molecular cell 13.4 (2004): 483-496.
72. Van Den Bulcke, An I., et al. "Structural and rheological properties of methacrylamide modified gelatin hydrogels." Biomacromolecules 1.1 (2000): 31-38.
73. Galis, Zorina S., and Jaikirshan J. Khatri. "Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly." Circulation research 90.3 (2002): 251-262.
74. Van den Steen, Philippe E., et al. "Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)." Critical reviews in biochemistry and molecular biology 37.6 (2002): 375-536.
75. Benton, Julie A., et al. "Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function." Tissue Engineering Part A 15.11 (2009): 3221-3230.
76. Abuchowski, Abraham, et al. "Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol." Journal of Biological Chemistry 252.11 (1977): 3578-3581.
77. Knop, Katrin, et al. "Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives." Angewandte chemie international edition 49.36 (2010): 6288-6308.
78. Kawai, Fusako. "Microbial degradation of polyethers." Applied Microbiology and Biotechnology 58.1 (2002): 30-38.
79. Harris, J. Milton, ed. Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Springer Science & Business Media, 2013.
80. Nguyen, Kytai Truong, and Jennifer L. West. "Photopolymerizable hydrogels for tissue engineering applications." Biomaterials 23.22 (2002): 4307-4314.
81. Reissig, José L., Jack L. Strominger, and Luis F. Leloir. "A modified colorimetric method for the estimation of N-acetylamino sugars." Journal of Biological Chemistry 217.2 (1955): 959-966.
82. Liu, Wanjun, et al. "Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks." Advanced healthcare materials 6.12 (2017): 1601451.
83. https://www.sigmaaldrich.com/catalog/product/aldrich/455008?lang=en®ion=TW
84. Zhao, Xin, et al. "Photocrosslinkable gelatin hydrogel for epidermal tissue engineering." Advanced healthcare materials5.1 (2016): 108-118.
85. Annabi, Nasim, et al. "Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro." Biomaterials 30.27 (2009): 4550-4557.
86. Pailler-Mattei, C., S. Bec, and H. Zahouani. "In vivo measurements of the elastic mechanical properties of human skin by indentation tests." Medical engineering & physics 30.5 (2008): 599-606.
87. Kim, Peter, et al. "Fabrication of poly (ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering." Biofabrication6.2 (2014): 024112.
88. Wang, Hang, et al. "Cell-laden photocrosslinked GelMA–DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering." Journal of Materials Science: Materials in Medicine 25.9 (2014): 2173-2183.
89. Nichol, Jason W., et al. "Cell-laden microengineered gelatin methacrylate hydrogels." Biomaterials 31.21 (2010): 5536-5544.