簡易檢索 / 詳目顯示

研究生: 葉上銘
Yeh, Shang-Ming
論文名稱: 大面積水熱法成長銀/銅氧化物/氧化鋅奈米線複合材料於可撓性基板及應用於光觸媒及氣體吸附
Large Area Hydrothermally Grown Silver/Copper Oxide/Zinc Oxide Nanowire Composite on Flexible Substrate and Applications in Photocatalysis and Gas Adsorption.
指導教授: 林鶴南
Lin, Heh-Nan
口試委員: 廖建能
Liao, Chien-Neng
甘炯耀
Gan, Jon-Yiew
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 51
中文關鍵詞: 氧化鋅複合材料光觸媒氣體吸附
外文關鍵詞: ZnO, composite, photocatalysis, gas-adsorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗將銅氧化物、銀和氧化鋅奈米線製成複合材料於A4紙基板上,先以水熱法成長氧化鋅奈米線於A4紙基板上,再以光還原法將銅氧化物及銀分別或共同還原於氧化鋅奈米線上,形成複合材料。並將氧化鋅奈米線、銅氧化物/氧化鋅奈米線、銀/氧化鋅奈米線、銀/銅氧化物/氧化鋅奈米線應用於光觸媒分解;將銅氧化物/氧化鋅奈米線複合材料應用於氣體吸附。
    以掃描式電子顯微鏡觀察表面形貌後,可以確定成長氧化鋅奈米線前後,A4紙基板表面變化以及光還原銀和銅氧化物後,氧化鋅奈米線的表面形貌差異;以能量色散X-射線光譜分析確認氧化鋅奈米線、銅氧化物/氧化鋅奈米線、銀/氧化鋅奈米線、銀/銅氧化物/氧化鋅奈米線中,無其他雜質之存在;以X-射線繞射分析確認氧化鋅晶格結構。
    光觸媒分解實驗燈源為300 W的鹵素燈,以10 × 10 cm2的A4紙為基板,以100 mL、濃度為10 µM的羅丹明B (rhodamine B)水溶液為有機汙染物,量測其濃度對時間的變化,透過數據分析得到氧化鋅奈米線、銅氧化物/氧化鋅奈米線、銀/氧化鋅奈米線及銅氧化物/銀/氧化鋅奈米線的一階反應速率,分別為0.0021 min-1、0.0034 min-1、0.0035 min-1、0.0033 min-1¬,每種複合材料皆比氧化鋅奈米線的光觸媒效率佳,是氧化鋅奈米線的1.67倍,推測為A4紙基板無法承受多次的光還原製程造成。
    氣體吸附實驗中,以二氧化氮為欲吸附氣體,一般大氣為背景氣體,以銅氧化物/氧化鋅奈米線於A4紙基板上做為氣體吸附材料,進行8升密閉腔體內的濃度100 ppb及500 ppb二氧化氮吸附,透過感測器得知腔體內的二氧化氮能夠幾乎被吸附,吸附完畢所需要的時間分別為一小時及四小時,且於100 ppb的二氧化氮吸附實驗中,材料泡水、烤乾後,可再次進行吸附,證實材料具有重複使用性,確認了銅氧化物/氧化鋅奈米線複合材料應用於密閉腔體中,低濃度的二氧化氮吸附有相當好的效果,具有實際應用之潛力。


    In this experiment, we worked on photocatalysis using ZnO nanowire(NW), CuxO/ZnO NW, Ag/ZnO NW, Ag/CuxO/ZnO NW composite on A4 paper substrate and gas adsorption using CuxO/ZnO NW composite on A4 paper substrate. ZnO were grown by the hydrothermal method and then photoreduced with CuxO and Ag by the photoreduction method on A4 paper substrate. In consideration of environment protection, we choose low temperature process and eco-friendly substrate. It showed great potential of industrial application.
    From SEM images, we could confirm the morphologies before and after photoreduction of Ag and CuxO on ZnO NW. The EDS spectra showed there were no other elements in the materials. The XRD showed the crystal structure of ZnO is wurzite.
    In photocatalytic experiment, we degrade 100 mL, 10 µM RhB aqueous solution with different ZnO NW composite on 10 × 10 A4 paper substrate under 300 W halogen lamp illumination. After data analysis, we obtained the first order kinetic constants of all samples. The first order kinetic constants of ZnO NW, CuxO/ZnO NW, Ag/ZnO NW and Ag/CuxO/ZnO NW composite are 0.0021 min-1, 0.0034 min-1, 0.0035 min-1 and 0.0033 min-1, respectively. Three kinds of composites revealed better photocatalytic efficiency. The first order kinetic constants of three composites were 1.67 times as high as that of ZnO NW. We inferred that A4 paper could be damaged by photoreduction process.
    In gas adsorption experiment, we adsorbed 100 ppb and 500 ppb NO2¬ with CuxO/ZnO NW composite on A4 paper substrate under ambient air in 8 L closed chamber. NO2 concentration was monitored by metal oxide-based gas sensor. From the data, we observed all NO2 molecules were adsorbed by CuxO/ZnO NW composite in 100 ppb and 500 ppb NO2 adsorption experiment. Moreover, CuxO/ZnO NW composite was confirmed that was reusable after immersing in DI water and dried in 100 ppb NO2 adsorption test.

    中文摘要 I Abstract III 誌謝 V 總目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 氧化鋅 5 2.1.1 基本性質 5 2.1.2 氧化鋅奈米線成長方法 6 2.1.3 氧化鋅缺陷 8 2.1.4 氧化鋅的光學性質 10 2.2 光觸媒催化反應 11 2.2.1 光觸媒催化分解原理 12 2.2.2 提升氧化鋅光觸媒的效率與方法 14 2.3 光還原法製備氧化鋅奈米線複合材料 15 2.4 表面電漿 (Surface Plasmon) 16 2.4.1 表面電漿原理 16 2.4.2 區域表面電漿 17 2.4.3 表面電漿於光觸媒應用 18 2.5 與窄能隙半導體結合 21 2.6 氧化鋅與二氧化氮吸附作用 22 2.7 氧化鋅氣體感測機制55 23 第三章 實驗儀器與方法 24 3.1 實驗設計 24 3.2 材料製作流程 25 3.2.1 基板前處理 25 3.2.2 製作晶種液 25 3.2.3 佈晶種層 26 3.2.4 成長氧化鋅奈米線 26 3.2.5 製備銅氧化物/氧化鋅奈米線複合材料 28 3.2.6 製備銀/氧化鋅奈米線複合材料 28 3.2.7 製備銀/銅氧化物/氧化鋅奈米線複合材料 28 3.3 分析儀器 29 3.3.1 掃描式電子顯微鏡 30 3.3.2 能量色散X-射線光譜 30 3.3.3 X-射線繞射分析 30 3.4 光觸媒催化反應與量測 30 3.4.1 光觸媒反應系統架構 30 3.4.2 光觸媒量測系統 31 3.4.3 光觸媒催化反應實驗步驟 32 3.4.4 吸收光譜量測步驟 33 3.5 二氧化氮吸附量測 33 3.5.1 氣體吸附系統架構 34 3.5.2 氣體吸附量測系統 35 3.5.3 二氧化氮吸附實驗及量測步驟 35 第四章 結果與討論 37 4.1材料特性分析 37 4.1.1 表面形貌 37 4.1.2 結構與組成 39 4.2 光觸媒分解效率結果討論 41 4.3 二氧化氮吸附結果討論 45 第五章 結論 48 參考文獻 50

    1. A. Fujishima, K. Honda, Nature 1972, 238, 37.
    2. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators, B 2007, 121, 18.
    3. S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C 2009, 113, 17893.
    4. C. Hariharan, Appl. Catal., A 2006, 304, 55.
    5. J. X. Sun, Y. P. Yuan, L. G. Qiu, X. Jiang, A. J. Xie, Y. H. Shen, J. F. Zhu, Dalton Trans. 2012, 41, 6756.
    6. X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z. L. Wang, Nano Energy 2015, 13, 414.
    7. M. Y. Chiang, H. N. Lin, Mater. Lett. 2015, 160, 440.
    8. V. Jabbari, J. M. Veleta, M. Zarei-Chaleshtori, J. Gardea-Torresdey, D. Villagran, Chem. Eng. J. 2016, 304, 774.
    9. B. Guo, L. Chang, K. Xie, J. Nat. Gas Chem. 2006, 15, 223.
    10. L. Y. Hong, H. W. Ke, C. E. Tsai, H. N. Lin, Mater. Lett. 2016, 185, 243.
    11. M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C 2011, 115, 12763.
    12. K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, Y. J. Lu, Surf. Coat. Technol. 2008, 202, 5339.
    13. M. Zayat, P. Garcia-parejo, D. Levy, Chem. Soc. Rev. 2007, 36, 1270.
    14. G. Zhang, M. Liu, Sens. Actuators, B 2000, 69, 144.
    15. D. R. Sahu, C. Liu, R. Wang, C. Kuo, Int. J. Appl. Ceram. Technol. 2013, 10, 814.
    16. Z. L. Wang, J. Phys.: Condens. Matter 2004, 16, 829.
    17. M. Zhao, Z. Wang, S. X. Mao, Nano Lett. 2004, 4, 587.
    18. Y. Zhang, M. K. Ram, E. K. Stefanakos, D. Y. Goswami, J. Nanomater. 2012, 12, 22.
    19. A. Manekkathodi, M. Lu, C. W. Wang, L. Chen, Adv. Mater. 2010, 22, 4059.
    20. G. Yi, C. Wang, W. I. Park, Semicond. Sci. Technol. 2005, 20, 22.
    21. B. D. Yao, Y. F. Chan, N. Wang, Appl. Phys. Lett. 2002, 81, 757.
    22. P. Chang, Z. Fan, W. Tseng, D. Wang, W. Chiou, J. Hong, J. G. Lu, Chem. Mater. 2004, 16, 5133.
    23. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
    24. J. Wang, L. Gao, Solid State Commun. 2004, 132, 269.
    25. C. Lu, L. Qi, J. Yang, D. Zhang, J. Ma, Chem. Commin. 2006, 0, 3551.
    26. S. Ahn, H. J. Ji, K. Kim, G. T. Kim, C. H. Bae, S. M. Park, Y. K. Kim, J. S. Ha, Appl. Phys. Lett. 200, 90, 153106.
    27. T. Okada, B. H. Agung, Y. Nakata, Appl. Phys. A: Mater. Sci. Process. 2004, 79, 1417.
    28. B. Illy, B. A. shollock, J. L. MacManus-Driscoll, M. P. Ryan, Nanotechnology. 2005, 16, 320.
    29. L. Schmidt-Mende, J. L. MacManus-Driscoll, Mater. Today 2007, 10, 40.
    30. W. I. Park, Y. H. Jun, S. W. Jung, G. Yi, Appl. Phys. Lett. 2003, 82, 964.
    31. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, H. K. Cho, J. Appl. Phys. 2009, 105, 13502.
    32. K. Ghule, A. V. Ghule, B. Chen, Y. Ling, Green Chem. 2006, 8, 1034.
    33. W. Liang, J. Li, Y. Jin, Build. Sci. 2012, 51, 345.
    34. J. Sun, S. Dong, J. Feng, X. Yin, X. Zhao, J. Mol. Catal. A: Chem. 2011, 335, 145.
    35. S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, S. Yoshikawa, J. photochem. Photobiol., A 2006, 184, 163.
    36. A. L. Linsebigler, G. Lu, J. J. T. Yates, Chem. Rev. 1995, 95, 735.
    37. M. A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater. 2006, 133, 226.
    38. P. M. Wood, Biochem. J. 1988, 253, 287.
    39. J. M. Monteagudo, A. Durán, R. González, A. J. Expósito, Appl. Catal., B 2015, 176, 120.
    40. J. Chang, H. Lin, Mater. Lett. 2014, 132, 134.
    41. Y. Chang, M. Chiang, J. Chang, H. Lin, Mater. Lett. 2015, 138, 85.
    42. Y. Abdu, A. O. Musa, Bayero J. Pure Appl. Sci. 2009, 2, 8.
    43. 江茂源, 國立清華大學碩士學位論文 2015.
    44. 邱國斌, 蔡定平, 物理雙月刊 2006, 28, 472.
    45. W. L.Barnes, A. Dereux, T. W. Ebbesen, Nature 2003, 424, 824.
    46. 王俐雲, 國立清華大學碩士學位論文 2014
    47. E. Hutter, J. H. Fendler, Adv. Mater. 2004, 16, 1685.
    48. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 2008, 130, 1676.
    49. W. Hou, S. B. Cronin, Adv. Funct, Mater. 2013, 23, 1612.
    50. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, N. J. Halas, Nano. Lett. 2013, 13, 240.
    51. S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D. Bristow, N. Wu, J. Am. Chem. Soc. 2012, 134, 15033.
    52. S. Sun, W. Wang, L. Zhang, M. Shang, L. Wang, Catal. Commun. 2009,11, 290.
    53. S. Wei, Y. Chen, Y. Ma, Z. Shao, J. Mol. Catal. A: Chem. 2010, 331, 112.
    54. M. Lee, K. Yong, Nanotechnology 2012, 23, 194014.
    55. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Lett. 2015, 7, 97.
    56. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, X. Y. Bao, Y. H. Lo, D. Wang, Nano Lett, 2007, 7, 1003.
    57. 蔡承恩, 國立清華大學碩士學位論文 2016.
    58. G. Zhang, M Liu, Sens. Actuators B 2000, 69, 144.
    59. J. Chang, H. Lin, J. Nanomater. 2014, 2014, 426457.
    60. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Inorg. Chem. 2007, 46, 6980.
    61. S. Hussain, C. Cao, G. Nabi, W. S. Khan, M. Tahir, M. Tanveer, I. Aslam, Optik 2017, 130, 372.

    QR CODE