研究生: |
侯思羽 Szu-Yu Hou |
---|---|
論文名稱: |
在出生前後時期,鼠大腦皮質內corticothalamic neurons的發育及與marginal zone cells的交互作用 Perinatal development of the corticothalamic neurons and their interactions with marginal zone cells in the rat |
指導教授: |
張兗君
Yen-Chung Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 雙向聯繫 、丘腦 、大腦皮質 、突觸 |
外文關鍵詞: | corticothalamic neuron, marginal zone |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在大腦皮質中,有一群神經細胞稱corticothalamic (CT) neurons,他們的特色是擁有很長的軸突(axons)伸到丘腦(thalamus)去。他們參與許多重要的生理功能,其中包括參與大腦的決策。
我們利用DiI染色的方法研究了出生前後時期CT neurons的型態。CT neurons是大腦皮質中較早形成的pyramidal cells。由胚胎時期第十八天(E18)到出生當天(P0),細胞型態有顯著的改變:細胞體由光滑的卵形變為近似三角的形狀,且basilar dendrites形成;apical dendrite分支數目也明顯變多。同樣在此時期,大腦皮質最外緣的一層構造:the marginal zone (MZ)細胞組織排列也有明顯變化,分層結構由三層轉變為一層。而早在E18時期,CT neurons的apical dendrites就與位於MZ的細胞接觸。
CT neurons會形成突觸(synapses),在E18時期即可以發現突觸小泡上的蛋白質synaptophysin會表現在apical dendrites上;而到了P0時期,synaptophysin也會分布在細胞體及鄰近的樹突(proximal dendrites)上。我們知道在E18時期大腦皮質與丘腦之間已形成雙向聯繫,我們發現此時接受GABA和glutamate訊號的突觸也已經在apical dendrites上形成了。因此我們認為至少在大鼠出生前三天,大腦皮質與丘腦之間已經有功能性的雙向傳遞。
The corticothalamic (CT) neurons, residing in the neocortex and sending axons to the thalamus, are important components for cortical processing and other brain functions. The morphology of DiI-back-labeled CT neurons in perinatal rat cortices was studied. The CT neurons are early-generated pyramidal cells in the neocortex. The CT neurons develop from cells having an oval cell body, no basilar dendrites and an apical dendrite with few branches in the marginal zone (MZ) into cells displaying a pyramidal-shaped cell body, 2-3 basilar dendrites and an apical dendrite with more complex branching in the MZ between embryonic day 18 (E18) and the day of birth (P0). The cellular organization of the MZ also indicates significant changes from a three-lamina pattern to a single-lamina one during the same period. The apical dendrites of the CT neurons can be found forming contacts with Cajal-Retzius (CR) and other cells in the MZ at E18. Synaptophysin-positive clusters mainly locate on the apical dendrites of E18, E20 and P0 CT neurons, while also are found on the cell bodies and proximal dendrites of P0 CT neurons. GABAergic and glutamatergic synapses are already formed on the apical dendrites of CT neurons as early as E18, when the cortical projection has reached their thalamic targets. Thus, it is likely that the cortex and thalamus in rat brains are linked to each other by functional connections in a two-way fashion at least three days before birth.
REFERENCES
Abramson BP, Chalupa LM. 1985. The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus. Neuroscience. 15(1):81-95.
Agmon A, Connors BW. 1991. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41(2-3):365-379.
Agmon A, Yang LT, O’Dowd DK, Jones EG. 1993. Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of mouse barrel cortex. J Neurosci. 13(12):5365–5382.
Altman J, Bayer SA. 1995. Atlas of prenatal rat brain development: CRC Press. 431, 491, 559 p.
Ayala R, Shu T, Tsai LH. 2007. Trekking across the brain: the journey of neuronal migration. Cell 128:29-43.
Ben-Ari Y. 2001. Developing networks play a similar melody. Trends Neurosci. 24(6):353-360.
Blumenfeld H, McCormick DA. 2000. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J. Neurosci. 20(13):5153-5162.
Del Río JA, Martínez A, Auladell C, Soriano E. 2000. Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb. Cortex 10(8):784-801.
Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW. 1977. Lateral diffusion in planar lipid bilayers. Science. 195:305-306.
Foster GA. 1998. Chemical Neuroanatomy of the Prenatal Rat Brain: Oxford university press. 162, 198 p.
Garaschuk O, Linn J, Eilers J, Konnerth A. 2000. Large-scale oscillatory calcium waves in the immature cortex. Nat. Neurosci. 3:452-459.
Gilbert CD, Kelly JP. 1975. The projections of cells in different layers of the cat's visual cortex. J Comp Neurol. 163(1):81-105.
Godement P, Vanselow J, Thanos S, Bonhoeffer F. 1987. A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101(4):697-713.
Guillery RW, Sherman SM. 2002. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33(2):163-175.
Higashi S, Molnar Z, Kurotani T, Toyama K. 2002. Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording. Neuroscience 115:1231-1246.
Honig MG, Hume RI. 1986. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol. 103(1):171-187.
Jacobson K, Hou Y, Derzko Z, Wojcleszyn J, Organisciak D. 1981. Lipid lateral diffusion in the surface membrane of cells and in multibilayers formed from plasma membrane lipids. Biochemistry. 20:5268-5275.
Jiménez D, Rivera R, López-Mascaraque L, De Carlos JA. 2003. Origin of the cortical layer I in rodents. Dev. Neurosci. 25(2-4):105-115.
Klausner RD, Wolf DE. 1980. Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry. 19:6199-6203.
LoTurco JJ, Blanton MG, Kriegstein AR. 1991. Initial
expression and endogenous activation of NMDA channels in early neocortical development. J. Neurosci. 11:792-799.
LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. 1995. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287-1298.
López-Bendito G, Molnár Z. 2003. Thalamocortical development: How are we going to get there? Nature Rev. Neurosci. 4:276-289.
Luhmann HJ, Hanganu I, Kilb W. 2003. Cellular physiology of the neonatal rat cerebral cortex. Brain Res. Bull. 60:345-353.
Marín-Padilla M. 1998. Cajal-Retzius cells and the development of the neocortex. Trends Neurosci. 21(2):64-71.
Martin LJ, Furuta A, Blackstone CD. 1998. AMPA receptor protein in developing rat brain: glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience 83(3):917-928.
McCormick DA, Bal T. 1997. Sleep and arousal: Thalamocortical mechanisms. Ann. Rev. Neurosci. 20: 185-215.
Meyer G, Shora JM, Martínez-Galán JR, Martín-Clemente B,
Fairén A. 1998. Different originis and evelopmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397(4):493-518.
Molnár Z, Adams R, Blakemore C. 1998. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18(15):5723-5745.
Molnár Z, Kurotani T, Higashi S, Yamamoto N, Toyama K. 2003. Development of functional thalamocortical synapses studies with current source-density analysis in whole forebrain slices in the rat. Brain Res. Bull. 60:355-371.
Mumford D. 1994. Neuronal architectures for pattern theoretic problems. In: Large-Scale Neuronal Theories of the Brain (Koch C, Davis J, editors.) Cambridge: MIT Press. 125-152 p.
Nakajima K. 2007. Control of tangential/non-radial migration of neurons in the developing cerebral cortex. Neurochem. Int. 51:121-131.
Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. 2004. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7:136-144.
Owens DF, Boyce LH, Davis MBE, Kriegstein AR. 1996. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci. 16:6414-6423.
Parnavelas JG. 2000. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23:126-131.
Rice DS, Curran T. 2001. Role of the reelin signaling pathway in central nervous system development. Ann. Rev. Neurosci. 24:1005-1039.
Schlessinger J, Axelrod D, Koppel DE, Webb WW, Elson EL. 1977. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science. 195:307-309.
Schwartz TH, Rabinowitz D, Unni V, Kumar VS, Smetters DK, Tsiola A, Yuste R. 1998. Networks of coractive neurons in developing layer 1. Neuron 20:541-552.
Sherman SM, Guillery RW. 2001. Exploring the Thalamus. San Diego: Academic Press.
Sherman SM, Guillery RW. 2002. The role of the thalamus in the flow of information to the cortex. Phil. Trans. R. Soc. Lond. B Biol. Sci. 357:1695-1708.
Sherman SM, Guillery RW. 2004. Thalamus. In: The Synaptic Organization of the Brain, fifth edition (Shepherd GM, editor.) New York: Oxford University Press, 311-359 p.
Sims PJ, Waggoner AS, Wang CH, Hoffman JF. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 13:3315-3330.
Steriade M, McCormick DA, Sejnowski TJ. 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science. 262(5134):679-685.
Valverde F, Facal-Valverde MV, Santacana M, Heredia M. 1989. Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study. J. Comp. Neurol. 290:118-140.
Zarrinpar A, Callaway EM. 2006. Local connections to specific types of layer 6 neurons in the rat visual cortex. J. Neurophysiol. 95(3):1751-1761.
Zhang ZW, Deschenes M. 1997. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J. Neurosci. 17:6365–6379.