簡易檢索 / 詳目顯示

研究生: 陳柏翰
Po-Ham Chen
論文名稱: 調製一維豆莢狀金-氧化鎵奈米線及其奈米元件
Control Growth of One-Dimensional Gold-Peapodded Ga2O3 Nanowires and Their Devices
指導教授: 周立人
Li-Jen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 94
中文關鍵詞: 氧化鎵奈米線豆莢鑲埋表面電漿共振
外文關鍵詞: gallium oxide, nanowire, gold-peapodded, embedded, LSPR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究一維鎵基奈米材料的合成、鑑定與應用,共分為以下幾個主題:(1)純氧化鎵奈米線之合成技術,(2)一維豆莢狀金-氧化鎵 (Au-peapodded Gallium Oxide Nanowires)複合奈米線之合成技術與奈米元件製作,(3) 一維豆莢狀金-氧化鎵複合奈米線的光學及電學性質量測研究
    在此介紹兩種一維豆莢狀金-氧化鎵奈米線的製備方式,(a)一階段合成法:藉由金屬鎵,金及二氧化矽於800°C下反應,便可生成具有雙晶結構之一維豆莢狀複合奈米線,(b)二階段合成法: 將一維核殼狀金-氧化鎵奈米線 (Core-Shell Au-Gallium Oxide Nanowires),經由簡單地熱退火實驗,而製作出許多各式各樣的一維豆莢狀金-氧化鎵奈米線。
    另外,藉著使用暗視野模式光學顯微術研究其區域表面電漿共振特性 (Localized Surface Plasma Resonance, LSPR),發現其散射光譜的特徵峰,會隨著鑲埋在氧化鎵奈米線內的金奈米顆粒之粒徑大小及不同的形狀,而有不同的峰值。而此種豆莢結構之複合奈米線材料,因其區域表面電漿共振特性,使其具有對532及658奈米波長之可見光的高感光度吸收效應,因此具有很大的潛力用來製作奈米光電元件。


    The present thesis focused on the synthesis, characterizations and applications of the one-dimensional 1-D Ga-based nanometerials, including the following topics: (1) synthesis of pure Ga2O3 nanowires, (2) synthesis and fabrication of nanodevices of gold-peapodded Ga2O3 nanowires, (3) investigation of optical and electrical properties of gold-peapodded Ga2O3 nanowires.
    Here, we report two different methods to synthesize gold-peapodded Ga2O3 nanowires, (a) one-step method: novel metal-insulator heterostructures made of twinned Ga2O3 nanowires with embedded discrete gold particles were achieved through a reaction between gold, gallium, and silica at 800° C. (b) two-step method: various gold-peapodded Ga2O3 nanowires were well designed via thermal annealing processes of the core-shell gold-Ga2O3 nanowires at a sufficient high temperature.
    Furthermore, dark-field optical microscopy was utilized to investigate the localized surface plasmon resonance (LSPR) characteristics of 1-D Ga-base nanowires. It was observed that varied scattering spectra peaks were obtained with different embedded particle sizes and shapes. Owing to the localized surface plasmon resonance effect, single gold-peapodded Ga2O3 nanowire device with highly photosensitive absorption of 532 and 658 nm visible light was designed, which may be chosen as potential building blocks for nanoscale optoelectronics.

    Contents I Acknowledgements IV Abstract V 摘要 VII List of Acronyms and Abbreviations VIII Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.2 One-Dimensional (1D) Nanostructures 3 1.2.1 Synthetical Method and Growth Mechanism of One-Dimensional Nanostructures 5 1.2.2 Vapor-Liquid-Solid (VLS) Method 5 1.2.3 Vapor-Solid Method 8 1.3 Background of Research 10 1.3.1 Gallium Oxide Nanowires 10 1.3.3 Gold-Peapodded Nanostructures 12 1.4 Localized Surface Plasmon Resonance of Metal Nanoparticles 14 1.5 Motivation and Research Direction 15 Chapter 2 Experimental Instruments 17 2.1 Furnace System 17 2.2 Scanning Electron Microscope (SEM) 17 2.3 Transmission Electron Microscope (TEM) 18 2.4 X-Ray Diffractometer 19 2.5 UV-visible Spectroscopy 19 2.7 Cathodoluminescence (CL) 20 2.8 Scattering Spectra Setups 20 2.8.1 Optical microscopy 20 2.8.2 Spectrometer 22 Chapter 3 Synthesis and Characterization of Single Crystal Ga2O3 nanowires 24 3.1 Motivation 24 3.2 Experimental Procedures 25 3.3 Results and Discussion 25 3.3.1 Surface Morphology Analysis 25 3.3.2 Structure Analysis by X-ray Diffraction 26 3.3.3 Structure and Composition Analysis by HRTEM 27 3.3.4 Optical Absorption Spectrum 30 Chapter 4 Synthesis and Characterization of Gold-Peapodded Ga2O3 nanowires 32 4.1 Motivation 32 4.2 Experimental Procedures 32 4.3 Results and Discussion 33 4.3.1 Surface Morphology Analysis 33 4.3.2 Structure and Composition Analysis by HRTEM 34 4.3.3 Growth Mechanism 39 Chapter 5 Synthesis and Characterization of Gold-Peapodded Ga2O3 Nanowires Driven by Rayleigh Instability 43 5.1 Motivation 43 5.2 Experimental Procedures 44 5.3 Results and Discussion 46 5.3.1 Analysis of Morphological Changes by SEM 46 5.3.2 In-Situ Observation of Rayleigh Instability Behavior within core-shell gold-Ga2O3 nanowires 49 5.3.3 Structure Analysis by HRTEM 53 Chapter 6 Optical and Electrical Properties of Gold-peapodded Ga2O3 nanowires 55 6.1 Motivation and Theories 55 6.2 Experimental Procedures 61 6.2.1 Cathodoluminescence (CL) Spectra Measurement 61 6.2.2 Scattering Spectra Measurement 61 6.3 Results and discussion 63 6.3.1 The CL Spectrum of Gold-peapodded Ga2O3 nanowires 63 6.3.2 The Scattering Spectrum of Gold-peapodded Ga2O3 nanowires 66 6.3.3 Photoresponse Measurements 71 Chapter 7 Summary and Conclusions 76 References 80

    Chapter 1
    [1.1] Y. H. Yang, X. Y. Chen, Y. Feng, and G. W. Yang, “Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire”, Nano Lett.,7, (2007), p.3879-3883.
    [1.2] J. M. Krans, J. M. van Rultenbeek, V. V. Fisun, I.K. Yanson, and L. J. de Jongh, ”The signature of conductance quantization in metallic point contacts”, Nature, 375, (1995), pp.767-769.
    [1.3] D. K. Sarkar, D. Brassard, and M. A. El Khakani, ”Single-electron tunneling at room temperature in TixSi1−xO2 nanocomposite thin films”, Appl. Phys. Lett., 87, (2005), pp.253108-253110.
    [1.4] G. Markovich, C. P. Cllier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, ”Architectonic Quantum Dot Solids”, Acc. Chem. Res., 32, (1999), pp.415-423.
    [1.5] M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, ”Resonant tunneling of electrons via 20 nm scale InAs Quantum dot and magnetotunneling spectroscopy of its electronic states”, Appl. Phys. Lett., 70, (1997), pp.6-8.
    [1.6] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, ”Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, 286, (1999), pp.1550-1552.
    [1.7] M. T. Bjo¨ rk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelsonb, ”Nanowire resonant tunneling diodes”, Appl. Phys. Lett., 81, (2002), pp.4458-4460.
    [1.8] James D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration”, Science, 293, (2001), pp.2044-2049.
    [1.9] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, ”A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology”, Science, 80, (1998), pp.1716-1721.
    [1.10] C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, ”A [2]Catenane-Based Solid State Electronically ReconÞgurable Switch”, Science, 289, (2000), pp.1172-1175.
    [1.11] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, ”Electronically ConÞgurable Molecular-Based Logic Gates”, Science, 285, (1999), pp.391-394.
    [1.12] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, ”Asingle-electron transistor made from a cadmium selenide nanocrystal”, Nature, 389, (1997), pp.699-701.
    [1.13] S. Iijima, ”Helical microtubules of graphitic carbon”, Nature, 354, (1991), pp.56-58.
    [1.14] Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon”, Science, 281, (1998), pp.973-975.
    [1.15] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S. Iijima “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods”, Science, 285, (1999), pp.1719-1722.
    [1.16] Y. Cui1 and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks” ,Science, 291, (2001), pp.851-853.
    [1.17] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, 294, (2001), pp.1313-1317.
    [1.18] W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube–Confined Reaction”, Science, 277, (1997), pp.1287-1289.
    [1.19] J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, ”Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods”, Science, 292, (2001), pp.2060-2063.
    [1.20] H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, L. W. Wang, and W. E. Buhro, “Cadmium Selenide Quantum Wires and the Transition from 3D to 2D Confinement”, J. Am. Chem. Soc. 123, (2003), pp.16168-16169.
    [1.21] X. Duan, and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires”, Adv. Mater, 12, (2000), pp.298-306.
    [1.22] M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires”, J. Phys. Chem. B, 105, (2001), pp.4062-4064.
    [1.23] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires”, J. Phys. Che., 104, (2000), pp.5213-5216.
    [1.24] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature, 409, (2001), pp.66-69.
    [1.25] A. Motayeda, and A. V. Davydov, “365 nm operation of n-nanowire/p-gallium nitride homojunction light emitting diodes”, Appl. Phys. Lett., 90, (2007), pp183120-183120.
    [1.26] F. Qian, S. Gradecˇak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes”, Nano Lett., 5, (2005), pp.2287-2291.
    [1.27] Y. Cui1, and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science, 291, (2001), pp.851-853.
    [1.28] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, 294, (2001), pp.1313-1317.
    [1.29] X. Jiang, T. Herricks, and Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air” , Nano Lett., 2, (2002), pp.1333-1338.
    [1.30] R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Growth”, Appl. Phys. Lett., 4, (1964), pp.89-90.
    [1.31] T. Hanrath, and B. A. Korgel, “Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals”, J. Am. Chem. Soc., 124, (2002), pp.1424-1429.
    [1.32] M. Walther, E. Kapon, J. Christen, D. M. Hwang, and R. Bhat, “Carrier capture and quantum confinement in GaAs/AIGaAs quantum wire lasers grown on V-grooved substrates”, Appl. Phys. Lett.,60, (1992), p.521-523.
    [1.33] M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth”, J. Nanosci. Nanotech,3, (2003), pp.341-346.
    [1.34] D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, and H. Yusa, “Nanotubes in boron nitride laser heated at high pressure”, Appl. Phys. Lett., 69, (1996), pp.2045-2047.
    [1.35] S. Geller, “Crystal Structure of β-Ga2O3”, J. Chem. Phys., 33, (1960), p.676.
    [1.36] T. Schwebel, M. Fleischer, and H. Meixner, “A selective, temperature compensated O2 sensor based on Ga2O3 thin Films”, Sensors and Actuators B, 65, (2000), pp.176–180.
    [1.37] T. Schwebel, M. Fleischer, H. Meixner, and C.-D. Kohl, “CO-Sensor for domestic use based on high temperature stable Ga2O3 thin films”, Sensors and Actuators B, 49, (1998), pp.46–51.
    [1.38] M. F. Yu, M. Z. Atashbar, and X. Chen, “Mechanical and Electrical Characterization of β-Ga2O3 Nanostructures for Sensing Applications”, IEEE SENSORS JOURNAL, 5, (2005), pp.20-25.
    [1.39] V. Halte, J. Y. Bigot, B. Palpant, M. Broyer, B. Pre´ vel, and A. Pe´rez, “Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices”, Appl. Phys. Lett., 75, ( 1999), pp.3799-3801.
    [1.40] J. L. Gu, J. L. Shi, G. J. You, L. M. Xiong, S. X. Qian, Z. L. Hua, and H. R. Chen, “Incorporation of Highly Dispersed Gold Nanoparticles into the Pore Channels of Mesoporous Silica Thin Films and Their Ultrafast Nonlinear Optical Response”, Adv. Mater., 17, (2005), pp.557-560.
    [1.41] H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, ”Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales”, Optics Letters, 23, (1998), pp.388-390.
    [1.42] G. Ma, W. Sun, S. H. Tang, H. Zhang, and Z. Shen, “Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices”, Optics Letters, 27, (2002), pp.1043-1045.
    [1.43] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires”, Nature Materials, 5, (2006),pp.102-106.
    [1.44] F. M. Kolb, A. Berger, H. Hofmeister, E. Pippel, U. Gösele, and M. Zacharias, ”Periodic chains of gold nanoparticles and the role of oxygen during the growth of silicon nanowires”, Appl. Phys. Lett., 89, (2006), pp.173111-173113.
    [1.45] J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen and L. C. Chen, “Growth and Optical Properties of Self-Organized Au2Si Nanospheres Pea-Podded in a Silicon Nanowire”, Adv. Mater., 14, (2002),pp.1847-1850.
    [1.46] S. E. Hunyadi, and C. J. Murphy, “Tunable One-Dimensional Silver-Silica Nanopeapod Architectures”, J. Phys. Chem. B, 110, (2006), pp.7226-7231.
    [1.47] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, 107, (2003), pp.668-677.
    [1.48] C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-Dependent Plasmon-Resonant Gold Nanoparticles”, Small, 2, (2006), pp.636-639.
    [1.49] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing”, J. Phys. Chem. B, 106, (2002), pp.1898-1902.
    [1.50] A. D. McFarland, and R. P. Van Duyne, “Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity”, Nano Lett., 3, (2003), pp.1057-1062.
    [1.51] B. Tian1, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources”, Nature, 449, (2007), pp.885-887.
    [1.52] B. Y. Sun, Y. Sato, K. Suenaga, T. Okazaki, N. Kishi, T. Sugai,S. Bandow, S. Iijima, and H. Shinohara, “Entrapping of Exohedral Metallofullerenes in Carbon Nanotubes: (CsC60) n@SWNT Nano-Peapods”, J. Am. Chem. Soc., 127, (2005), pp.17972-17973.
    Chapter 2
    [2.1] M. W. Davidson and M. Abramowitz, Optical Microscopy, Olympus America, Inc.

    Chapter 3
    [3.1] X. Xiang, C. B. Cao, and H. S. Zhu, “Synthesis and Photoluminescence of Gallium Oxide Ultra-Long Nanowires and Thin Nanosheets”, J. Crystal Growth, 279, (2005), pp.122-128.
    Chapter 4
    [4.1] Y. Xia, P Yang, Y Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Ya, “One-Dimensional Nanostructures: Synthesis, Characterization, and Application”, Adv. Mater., 15, (2003), pp.353-389.
    [4.2] S. Link, and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods”, J. Phys. Chem. B, 103, (1999), pp.8410-8426.
    [4.3] Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chain”, Nano Lett., 4, (2004), pp.1067-1071.
    [4.4] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local Detection of Electromagnetic Energy Transport Below The Diffraction Limit in Metal Nanoparticle Plamon Waveguides”, Nature, 2, (2003), pp.229-232.
    [4.5] S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of Coupled Plasmon-Polarition Modes in Au Nanoparticles Chain Waveguides of Different Lengths: Estimation of Waveguide Loss”, Appl. Phys. Lett. 81, (2002), pp.1714-1716.
    [4.6] Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, Structures”, J. Am. Chem. Soc., 123, (2001), pp.8718-8729.
    [4.7] C. C. Tang, S. S. Fan, Marc Lamy de la Chapelle, and P. Li, ”Silica-assisted catalytic growth of oxide and nitride nanowires”, Chem. Phys. Lett., 333, (2001), pp.12-15.
    [4.8] E. A. Brandes, “Smithells Metals Reference Book, 6th”, Butterworths, London, (1983), pp.12-18.
    [4.9] M. Zinkevich, and F. Aldinger, ”Thermodynamic Assessment of the Gallium-Oxygen System”, J. Am. Ceram. Soc., 87, (2004), pp.683-691.
    [4.10] Y. H. Gao, Y. Bando, T. Sato, and Y. F. Zhang, ”Synthesis, Raman scattering and defects of β-Ga2O3 nanorods”, Appl. Phys. Lett., 81, (2002), pp.2267-2269.
    [4.11] Okamoto, and T. B. Massalski, “Phase Diagrams of Binary Gold Alloys”, ASM International: Metasl Park,OH, 1987, p.112.
    Chapter 5
    [5.1] M. E. Toimil Molares, A. G. Balogh, T. W. Cornelius, R. Neumann, and C. Trautmann, “Fragmentation of nanowires driven by Rayleigh instability”, Appl. Phys. Lett, 85, (2004), pp.5337-5339.
    [5.2] S. Karim, M. E. Toimil-Molares, A. G. Balogh, W. Ensinger, T. W. Cornelius, E Ukhan, and R Neumann, “Morphological Evolution of Au Nanowires Controlled by Rayleigh Instability”, Nanotechnology, 17, (2006), pp.5954–5959.
    [5.3] Y. Qin, S. M. Lee, A. Pan, U. Gosele, and M. Knez, “Rayleigh-Instability-Induced MetalNanoparticle Chains Encapsulated in Nanotubes Produced by Atomic LayerDeposition”, Nano lett., 8, (2008), pp.114-118.
    Chapter 6
    [6.1] S. Link and M. A. El-Sayed, “Shape and Size Dependence of Radiative, Non-radiative and Photothermal Properties of Gold Nanocrystals”, Int. Rev. in Phys. Chem., 19, (2000), pp.409-453.
    [6.2] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles”, J. Chem. Phys., 116, (2002), pp.6755-6759.
    [6.3] S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of TheirAspect Ratio and the Effect of the Medium Dielectric Constant”, J. Phys. Chem. B, 103, (1993), pp.3073-3077.
    [6.4] J. Zhang, F. Jiang, “Catalytic Growth of Ga2O3 Nanowires by Physical Evaporation and Their Photoluminescence Properties”, Chem. Phys., 289 (2003) pp.243–249.
    [6.5] H. J. Chun, and Y. S. Choi, “Controlled Stucture of Gallium Oxide Nanowires”, J. Phys. Chem. B, 107, (2003), pp.9042-9046.
    [6.6] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, and L. D. Zhang, “Catalytic Synthesis and Photoluminescence of β–Ga2O3 Nanowires“, Appl. Phys. Lett., 78, (2001), pp.3202-3204.
    [6.7] L. Binet, and D. Gourier, “Origin of The Blue Luminescence of β–Ga2O3”, J. Phys. Chem. Solids, 59, (1998), pp.1241-1249.
    [6.8] S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “ Aligned Gold Nanorods in Silica Made by Ion Irradiation of Core-Shell Colloidal Particles“, Adv. Mater., 16, (2004), pp.235-237.
    [6.9] K. Berthold, R. A. Hopfel,and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible”, Appl. Phys. Lett., 46, (1985), pp.626-628.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE