研究生: |
陳眉秀 |
---|---|
論文名稱: |
石墨烯微片/環氧樹脂預浸材對碳纖維補強複合材料之機械性質與拉伸疲勞暨溫濕老化影響效應之研究 Mechanical Properties and Tensile Fatigue with Effect of Temperature and Humidity of Aging Behavior of Graphene Nanoplates / Epoxy Prepreg Material for Carbon Fiber Reinforced Composites |
指導教授: | 葉銘泉 |
口試委員: |
蔡宏營
葉維磬 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 石墨烯 、環氧樹脂 、碳纖維 、機械性質 、軸向拉伸疲勞 、溫濕老化 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯微片(Graphene Nanoplates, GPL)為單層之石墨烯(Graphene)之蜂巢似的二維平面結構,以多層所堆疊而成石墨烯微片;而石墨烯擁有非常高的比表面積,且機械強度高(楊氏模數:1 TPa,強度:130 GPa)、加上顯著的剛性與可隢性、黏度低、無毒性,因此做為補強材料對於改善且增強碳纖維/高分子基層板複合材料(Carbon Fiber Reinforced Polymer, CFRP)之機械性質與物理性質的探討有顯著的影響。
本研究即以石墨烯微片做為補強材(Reinforcement),環氧樹脂為基材(Matrix),先以研究石墨烯微片對環氧樹脂基材之機械性質與物理性質的影響,藉由添加不同比例之石墨烯微片來觀察彎曲強度、衝擊強度與熱傳導、導電性質等,找出最佳混和之重量百分比,得到最佳範圍,本研究以0wt%、0.25wt%、0.5wt%、1wt%、1.5wt%之石墨烯重量百分比的環氧樹脂複合材料做測試,由實驗結果顯示當石墨烯微片添加量至0.25~0.5wt%時,與Neat 環氧樹脂複合材料相比,其彎曲、拉伸與衝擊強度皆分別提升了9%、20%與153%,對機械性質有提昇的趨勢。
藉由研究數據,再以比例之範圍0wt%、0.25wt%、0.5wt%、0.75wt%之石墨烯微添加量,研究石墨烯微片/碳纖維/高分子基層板複合材料的機械性質、物理性質,由實驗結果顯示當石墨烯微片添加量至0.25wt%時,對碳纖維積層板複合材料之機械性質有最佳的補強特性,其彎曲、拉伸與層間剪應力強度皆分別提升了5%、6%與9%;再以機械軸向拉伸疲勞性質來探討材料介面鏈結之情形與其主要破壞機制,石墨烯微片添加量0.25wt%之碳纖維環氧樹脂積層板複合材料較 Neat CFRP 的疲勞壽命值在應力等級下可提升1.21~5.39倍,而在絕對應力下可提升 15.30~37.07倍;接著將試片經過三種溫濕老化環境下,觀察對機械靜態強度與疲勞壽命的影響,進而研究石墨烯微片對碳纖維/高分子基層板複合材料抗老化之機制,由實驗結果發現添加石墨烯微片之碳纖維積層板複合材料對抑制環境老化之作用有相當的補強效果。
參考文獻
[1]"石墨烯," http://zh.wikipedia.org/, 2011.
[2]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, pp. 183-191, 2007.
[3]C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008.
[4]K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[5]A. K. Geim, "Graphene: status and prospects," Science, vol. 324, pp. 1530-1534, 2009.
[6]D. Cai and M. Song, "Recent advance in functionalized graphene/polymer nanocomposites," J. Mater. Chem., vol. 20, pp. 7906-7915, 2010.
[7]L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim and J. Huang, "Graphene oxide as surfactant sheets," Pure and Applied Chemistry, vol. 83, p. 95, 2011.
[8]I. Zaman, T. T. Phan, H. C. Kuan, Q. Meng, L. T. Bao La, L. Luong, O. Youssf and J. Ma, "Epoxy/graphene platelets nanocomposites with two levels of interface strength," Polymer, 2011.
[9]C. A., "Epoxy resins: chemistry and technology: CRC, " 1988.
[10]王國書, "奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究," 國立清華大學動力機械工程學系碩士論文, 2007.
[11]J. N. Coleman, U. Khan and Y. K. Gun'ko, "Mechanical reinforcement of polymers using carbon nanotubes," Advanced Materials, vol. 18, pp. 689-706, 2006.
[12]周鈞淳, "碳氣凝膠對高分子預浸材積層板複合材料之機械性質影響," 國立清華大學動力機械工程學系碩士論文, 2010.
[13]D. R. Bortz, C. Merino and I. Martin-Gullon, "Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates," Composites Part A: Applied Science and Manufacturing, 2011.
[14]A. Argüelles, J. Viña, A. Canteli and A. Lopez, "Influence of the Matrix Type on the Mode I Fracture of Carbon-Epoxy Composites Under Dynamic Delamination," Experimental mechanics, vol. 51, pp. 293-301, 2011.
[15]Saud Aldajah and Y. Haik, "Transverse strength enhancement of carbon fiber reinforced polymer composites by means of magnetically aligned carbon nanotubes," Materials and Design, vol. 34, pp. 379-383, 2012.
[16]J. Qiu and S. Wang, "Enhancing polymer performance through graphene sheets," Journal of Applied Polymer Science, vol. 119, pp. 3670-3674, 2011.
[17]S. Biswas, H. Fukushima and L. T. Drzal, "Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites," Composites Part A: Applied Science and Manufacturing, 2010.
[18]S. Vadukumpully, J. Paul, N. Mahanta and S. Valiyaveettil, "Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability," Carbon, vol. 49, pp. 198-205, 2011.
[19]X. Yang, L. Li, S. Shang and X. Tao, "Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites," Polymer, vol. 51, pp. 3431-3435, 2010.
[20]M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, "Enhanced mechanical properties of nanocomposites at low graphene content," ACS Nano, vol. 3, pp. 3884-3890, 2009.
[21]M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, "Fracture and fatigue in graphene nanocomposites," Small, vol. 6, pp. 179-183, 2010.
[22]R. Talreja, "Fatigue of composite materials," Pennsylavania U.S.A.: Technomic, 1987.
[23]P. Paris and F. Erdogan, "A critical analysis of crack propagation laws," Journal of Basic Engineering, vol. 85, p. 528, 1963.
[24]F. Yavari, M. Rafiee, J. Rafiee, Z. Z. Yu and N. Koratkar, "Dramatic increase in fatigue life in hierarchical graphene composites," ACS Applied Materials & Interfaces, 2010.
[25]D. R. Bortz, E. G. Heras and I. Martin-Gullon, "Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites," Macromolecules, 2012.
[26]張鴻鈞, "疊層方式, 熱循環及負載順序對 CFRP 複合材料之軸向疲勞性質影響," 國立清華大學動力機械工程學系碩士論文, 2001.
[27]洪尊鵬, "濕度及衝擊對擬均向性碳纖維/環氧樹脂複合材料之靜態及疲勞行為的影響," 國立清華大學動力機械工程學系碩士論文, 1997.
[28]A. Wöhler, "Ueber die festigkeits-versuche mit eisen und stahl, " vol. VIII, X, XIII, XVI, and XX. Zeitschrift fur Bauwesen, 1870.
[29]G. W. He and D. Xu, "S-N curve of MWCNTs reinforced composites," presented at the Chinese Mechanical Engineering Society 23rd National Conference, 2006.
[30]楊又璇, "多壁奈米碳管對纖維補強高分子預浸材積層板複合材料機械性質與扭轉疲勞特性之研究," 國立清華大學動力機械工程學系碩士論文, 2011.
[31]W. Hwang and K. Han, "Fatigue of composites—fatigue modulus concept and life prediction," Journal of Composite Materials, vol. 20, pp. 154-165, 1986.
[32]B. De, "Corrosion and control of materials," Tsinghua University Press, pp. 196-207, 2005.
[33]M. L. Karasek, L. H. Strait, M. F. Amateau and J. P. Runt, "Effect of temperature and moisture on the impact behavior of graphite/epoxy composites. I: Impact energy absorption," Journal of composites technology & research, vol. 17, pp. 3-10, 1995.
[34]S. Kellas, J. Morton and P. Curtis, "The effect of hygrothermal environments upon the tensile and compressive strengths of notched CFRP laminates. Part 1: Static loading," Composites, vol. 21, pp. 41-51, 1990.
[35]J. Morton, S. Kellas and S. Bishop, "Damage characteristics in notched carbon fiber composites subjected to fatigue loading-environmental effects," Journal of composite materials, vol. 22, pp. 657-673, 1988.
[36]"EPO-622TM Type Resin data sheet," EPOTECH COMPOSITE CORPORATION, Ltd.
[37]ASTM D790-10, "Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials," Annual Book of ASTM Standards, 2010.
[38]ASTM D638-10, "Standard Test Method for Tensile Properties of Plastics," Annual Book of ASTM Standards, 2010.
[39]ASTM D3039/D3039M-08, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," Annual Book of ASTM Standards, 2008.
[40]ASTM D256-10, "Standard Test Method for Determining the Pendulum Impact Resistance of Notched Specimens of Plastics," Annual Book of ASTM Standards, 2010.
[41]ASTM D2344/D2344M-00, "Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates," Annual Book of ASTM Standards, 2006.
[42]ASTM D3479/D3479M-06, "Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials," Annual Book of ASTM Standards, 2007.
[43]ASTM D-5470, "Standard Test Methods for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials," Annual Book of ASTM Standards, 2006.
[44]ASTM E831-12, "Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis," Annual Book of ASTM Standards.