研究生: |
李易泰 Lee, I Tai |
---|---|
論文名稱: |
多重微流體平台 A multiplexed microfluidic platform |
指導教授: |
楊雅棠
Yang, Ya Tang |
口試委員: |
蔡伸隆
Cai, Shen Long 藍忠昱 Lan, Zhong Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 多重微流體裝置 、細胞型態變化 、抗藥性 |
外文關鍵詞: | multiplexed microfluidic, cell morphology, antibiotic drug resistance |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們介紹了一種低花費且可表達細菌對於抗生素的進化途徑的培養裝置,這個裝置可連續的觀察細菌的成長過程,為了驗證這個系統,我們逐步的測量Escherichia coli MG 1655對於trimethoprim的抗藥性,並置入多重微流體裝置中並測量大腸桿菌的型態變化和抗藥性,該方法可以延伸到實驗室的抗生素耐藥性研究,並擴展到其他的適應性進化和細菌培養實驗。
We describe a low cost, configurable bacterial culture device for characterizing the evolutionary pathway of antibiotic resistance. This device continuously monitors the evolving bacterial growth. To validate the platform, we measure the stepwise acquisition of trimethoprim resistance in Escherichia coli MG 1655, and integrate the platform into a multiplexed microfluidic platform for investigating cell morphology and antibiotic susceptibility. The approach can be up-scaled to laboratory studies of antibiotic drug resistance, and is extendible to other adaptive evolution and bacterial culture experiments.
1. Levy, S. B., Marshall, B. Antibiotic resistance worldwide: causes, challenges, and responses, Nature Medicine, 10, pp. s122-s129 (2004).
2. James Q. Boedicker, Liang Li, Timothy R. Kline and Rustem F. Ismagilov., Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics, Lab on a Chip, 1265–1272, (2008).
3. Roland R. Regoes, Camilla Wiuff, Renata M. Zappala, Kim N. Garner, Fernando Baquero, Bruce R. Levin., ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, p. 3670–3676, (2004).
4. Nate J. Cira, Jack Y. Ho, Megan E. Dueckb , Douglas B. Weibel., A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics, Lab on a Chip, DOI: 10.1039, (2011).
5. Wang, M. M. et al., Tracking the in vivo evolution of multidrug resistance in
Staphylococus aureus by whole genome sequencing, Pro. Natl. Acad. Sci., 104 ,
9451, (2007).
6. Dragosits, M., Mattanovich D., Adaptive laboratory evolution - principles and applications for biotechnology, Microbial Cell Factory, 12, pp. 64, (2013).
7. Zhang Q., Lambert G., Liao, D., Kim, H., Robin, K, Tung, C., Pourmand, Austin, R. H. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironment, Science, 333, 1764-1767, (2011).
8. Toprak, E. Veres, A, J.B. Mitchel, J. B., Hartl, D. L., Kishony, R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection, Nature Genetics, 44 101-106, (2012).
9. Rosenthal, A. Z., Michael B Elowitz, M. B. Following evolution of bacterial antibiotic resistance in real time, Nature Genetics, 44, 11-13, (2012).
10. Young, K. In vitro antibacterial resistance selection and quantitation, Current Protocols in Pharmacology, doi: 10.1002 (2006).
11. Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J., Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization, ACS Synthetic Biology, doi. 10.1021, (2015).
12. Mohan, R. et al., A multiplexed microfluidic platform for rapid antibiotic susceptibility testing, Biosensors and Bioelectronics, 49, 118-125, (2013).
13. Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., Quake, S. R., Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, 288, 113-116, (2000).
14. R. A. Kellogg, R. Gomez-Sjoberg, A. A. Leyrat, and S. Tay, Nat. Protocols 9, 1713 (2014).
15. Gu, G.Y., Lee, Y. W., Chiang, C. C., Yang, Y. T. A nanoliter microfluidic serial dilution bioreactor, Biomicrofluidics, 9, 044126, doi: 10.1063/1.4929946 (2015).
16. Okumus, B, Yildiz, S., Toprak, E. Fluidic and microfluidic tools for quantitative systems biology, Current Opinion in Biotechnology, 25, 30-38 (2014).
17. Cho, J. et al., A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl. Med. 17, 267, doi. 10.1126 (2014).
18. Hsu, S. B., Waltman, P. E. Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Applied Math. 528-540 (1992).
19. Fu, W. et al., Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor, Journal of Biotechnology 161, 242-249, (2012).
20. Peabody V, G. L., Winkler, J., Kao K. C. Tools for developing tolerance to toxic chemicals in microbial systems and perspectives on moving the field forward and into the industrial setting, Current Opinion in Chemical Engineering,6, 9-17, (2014).
21. R. A. Kellogg, R. Gomez-Sjoberg, A. A. Leyrat, and S. Tay, "High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics," Nat. Protocols 9, 1713 (2014).
22. Toprak, E. et al., Building a morbidostast: an automated continuous culture device for studying bacterial drug resistance under dynamically sustained drug inhibition, Nature Protocol, 8, 555-567, (2013).
23. Elsevier Ltd.,Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, (2003).