簡易檢索 / 詳目顯示

研究生: 劉喬凱
Liu, Chiao-Kai
論文名稱: 窄頻偏振糾纏光子之調控
Manipulation of narrowband polarization entangled photons
指導教授: 褚志崧
CHUU, CHIH-SUNG
口試委員: 王立邦
WANG, LI-BANG
劉怡維
LIU, I-WEI
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 窄頻偏振糾纏光子波形調製
外文關鍵詞: narrowband, polarization-entangled photons, amplitude modulation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們將會利用含有共振腔結構的非線性晶體以及其自發性參量降頻轉換(Spontaneous parametric down-conversion, SPDC)過程產生出能量-時間糾纏的窄頻雙光子,並且利用後選擇的方法以及Hong-Ou-Mandel干涉對頻率簡併的優化,我們能製備出偏振形式上的糾纏光子,即為偏振糾纏光子,接著我們會利用CHSH不等式、量子態斷層掃描、併發度(concurrence)的計算與測量來證實我們實驗上所製造的雙光子確實為偏振糾纏光子,最後我們還提供了一個純化糾纏光子的技術,我們利用了調製波包的方法,使頻率不為簡併態的糾纏光子提升了其糾纏上的性質,並且一樣利用CHSH不等式以及併發度的計算來驗證其純化效果。


    In this thesis, we generate energy-time entangled narrow-band photon pairs by using nonlinear crystal with monolithic cavity and spontaneous parametric down-conversion processes. We generate the polarization entangled photons with post selection and optimize the polarization entanglement with Hong-Ou-Mandel Interferometer.
    Finally, we confirm the polarization entanglement with the CHSH inequality, quantum state tomography and concurrence. We also develop a technique for purifying the entangled photons by modulating the photons.

    摘要 i 致謝 iii 目錄 iv 圖表目錄 vi 第一章 實驗目的 1 第二章 理論介紹 2 2-1 雙光子製備機制 2 2-1-1 自發性參量降頻轉換(Spontaneous parametric down-conversion, SPDC) 2 2-1-2二階強度關聯函數G2τ(Second-order Intensity Correlation Function) 3 2-2 Hong-Ou-Mandel干涉 6 2-3量子力學試驗 8 2-3-1 EPR悖論(EPR Paradox) 8 2-3-2 CHSH型貝爾不等式(CHSC inequality) 12 2-3-3 CHSH不等式最大破壞(Maximum S-Parameter) 17 2-4 量子態斷層掃描(Quantum state Tomography) 19 2-4-1 布洛赫球(Bloch Sphere) 19 2-4-2 單一量子位元斷層掃描(Single Qubit Tomography) 23 2-4-3 多體量子位元斷層掃描(Multi-Qubit Tomography) 24 2-5 糾纏度量(Measurement of Entanglement) 26 2-6 糾纏光子之純化(Purification of Entanglement) 27 第三章 系統源架設 31 3-1 雷射系統 31 3-2 鎖頻系統 32 3-3 窄頻光子晶體設計 33 第四章 實驗架設及量測 36 4-1 雙光子測量與調控 36 4-1-1 雙光子測量 36 4-1-2 調控單光子 38 4-2 Hong-Ou-Mandel干涉 40 4-2-1 頻率簡併雙光子製備 40 4-2-2 同路徑HOM干涉 43 4-3 CHSH不等式測量 46 4-3-1 偏振糾纏光子製備 46 4-3-2 糾纏光子關聯性測量 47 4-3-3 CHSH不等式之破壞 49 4-4 量子態斷層掃描(Quantum State Tomography) 51 4-5 純化糾纏光子 53 4-5-1 EOM單邊調製之純化 53 4-5-2 EOM 雙邊調製之純化 56 第五章 總結 57 附錄 58 附錄A 非線性光學 58 A1 非線性光學(Nonlinear Optics) 58 A2 非線性波動方程式(Nonlinear Wave Equation) 59 A3 二階非線性效應(Second-order Nonlinear Effect) 61 A4 相位匹配與準相位匹配(Phase Matching Condition) 63 A5耦合波動方程式(Coupled Wave Equation) 66 附錄B S值與雙光子干涉對比度關係 69 參考文獻 72

    [1] Mark Fox, Quantum Optics: An Introduction,OUP Oxford, 2006,p111-115
    [2] Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044–2046 (1987)
    [3] John C. Howell, Hong-Ou-Mandel Interference: A method for determining time-time correlations of entangled photons, Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
    [4] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777-780 (1935).
    [5] David Bohm, Quantum Theory. New York: Prentice Hall, 1951
    [6] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195-200 (1964).
    [7] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23, 880 (1969).
    [8] 張永德,《量子菜根譚》,北京:清華大學出版社,2012 年,第二三、二四講.
    [9] Mark Fox, Quantum Optics: An Introduction,OUP Oxford, 2006,304-309.
    [10] J. B. Altepeter, D. F. V. James, and P. G. Kwiat, Quantum State Tomography
    [11] Nielsen, Michael A.; Chuang, Isaac L. Quantum Computation and Quantum Information. Cambridge University Press. 2004.
    [12] Popescu, S., and D. Rohrlich, Thermodynamics and the measure of entanglement, Phys. Rev. A 56, R3319 (1997)
    [13] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996)
    [14] William K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev. Lett. 80 2245(1997)
    [15] P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, Electro-Optic Modulation of Single Photons, Phys. Rev. Lett. 101 , 103601 ( 2008 ).
    [16] Chih-Hsiang Wu, Tsung-Yao Wu, Yung-Chin Yeh, Po-Hui Liu, Chin-Hsuan Chang, Chiao-Kai Liu, Ting Cheng, and Chih-Sung Chuu, Bright single photons for light-matter interaction, Phys. Rev. A 96, 023811 (2017)
    [17] Daniel F. V. James,1, Paul G. Kwiat, William J. Munro, and Andrew G. White, Measurement of qubits, Phys. Rev. A, 64, 052312(2001)
    [18] Robert W. Boyd, Nonlinear Optics, Third Edition, Academic Press (2008)
    [19] C.-S. Chuu and S. Du, Narrowband Biphotons: Generation, Manipulation, and Applications,Invited book chapter in Engineering the Atom-PhotonInteraction, edited by A. Predojevic and M. W. Mitchell, Springer InternationalPublishing (2015)
    [20] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett. 7, 118 – Published 15 August (1961)
    [21] M. J. Collett and C.W. Gardiner, Squeezing of intracavity and traveling-wave light fields produced in parametric amplification, Phys. Rev. A 30 , 1386 (1984).
    [22] S. Sensarn, I. Ali-Khan, G.Y. Yin, and S.E. Harris, Resonant Sum Frequency Generation with Time-Energy Entangled Photons, Phys. Rev. Lett. 102 , 053602 (2009).

    QR CODE