簡易檢索 / 詳目顯示

研究生: 吳祚華
Wu, Tso-Hua
論文名稱: 應用結構光於銑刀端面磨耗檢測系統
Milling End Wear Monitoring System using Structured Light
指導教授: 葉哲良
Yeh, Jer-Liang
駱遠
Luo, Yuan
口試委員: 蔡孟勳
Tsai, Meng-Shiun
曾文鵬
Tseng, Wen-Peng
徐文慶
Hsu, Wen-Ching
鄭志鈞
Cheng, Chih-Chun
黃國政
Huang, Kuo-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 82
中文關鍵詞: 銑刀端面刀具磨耗結構光四步相移
外文關鍵詞: End face of milling tool, Tool wear, Structured light, Four-step phase shifting
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銑刀磨耗係影響產品良率之重要因素,其中銑刀端面直接與加工件表面接觸,對於成品表面精度影響極大,故需要可靠的銑刀端面磨耗檢測方法,最大化刀具價值。現今業界檢測主要依靠師傅判斷將刀具分類,然此辨別方式存在人為誤差、無法有效判斷刀具失效類型、量化磨耗程度及人工檢測耗時等問題,亦使刀具所佔之加工成本難以降低。故本研究期望能建立銑刀磨耗檢測系統,利用正弦條紋結構光投影搭配四步相移法,計算刀具表面形貌產生之相位移,並根據相位移及物體高度之關係,重建銑刀端面三維影像。
    本研究利用解析度測定圖驗證系統平面解析度為6.69 μm及影像解析度為4.34 μm。利用DMD模擬物體高度產生的相位移動,得到系統可解析之最小深度約為11.7 μm,而重建高度的標準誤差於X與Y軸方向分別為4.3 μm與12.7 μm。本系統量測範圍達10.1 mm×4.1 mm,足以覆蓋直徑12 mm銑刀端面上的單一刃面,並根據重建結果分析銑刀的失效類型,以及取得刀面磨耗量。


    Tool wear is an important factor affecting the yield of the product. The end face of the milling tool is directly in contact with the surface of the workpiece, which has a great influence on the surface precision of the finished product. Therefore, a reliable tool wear detection method is needed to maximize the tool value. Nowadays, the industry's testing mainly relies on the master's judgment to classify the tools. However, there is human error in the identification method, the inability to effectively judge the type of tool failure, the degree of quantitative wear and the time required for manual detection, etc. Therefore, the processing cost of the tool is difficult to reduce. This study hopes to establish a milling tool wear detection system, using the sinusoidal stripe structure light combined with the four-step phase shift method to calculate the phase displacement generated by the tool surface topography, and reconstruct the three-dimensional end face of the milling tool according to the relation between phase shift and the height of the object.
    The lateral resolution of the proposed system is 6.69 μm and pixel resolution is 4.34 μm by using the 1951 USAF resolution test chart. U The phase shift is simulated by DMD to obtain the minimum depth is 11.7 μm, and the standard error of the reconstruction height is 4.3 μm and 12.7 μm in the X and Y-axis directions, respectively. The measurement range is 10.1 mm × 4.1 mm, which is enough to cover the single blade surface on the end face of the 12 mm diameter milling tool. The failure type of the milling tool can be analyzed according to the reconstruction result and to obtain the quantified cutter wear.

    誌謝 i 中文摘要 ii Abstract iii 圖目錄 iv 表目錄 vii 符號說明 viii 第一章 前言 1 第二章 文獻探討 3 2.1 銑刀磨耗機制 3 2.2 刀具端面磨耗檢測產品 6 2.3 刀具端面磨耗檢測技術 11 第三章 研究理論及方法 16 3.1 結構光三維重建技術 16 3.1.1 正弦條紋結構光投影原理 17 3.1.2 四步相移演算法 20 3.1.3 相位展開原理 21 3.2 結構光硬體模型與校正原理 24 3.2.1 相機模型 25 3.2.2 相機校正 28 3.2.3 投影機校正 30 3.3 實驗設計與架設 32 3.3.1 系統評估 32 3.3.2 系統架構 34 3.3.3 系統操作流程 36 第四章 結果與討論 39 4.1 系統解析度驗證 39 4.1.1平面解析度 39 4.1.2 深度解析度 43 4.2 相機及投影機校正結果 44 4.3 系統誤差分析 47 4.4 結構光重建結果與分析 49 4.4.1 結構光重建高度驗證 49 4.4.2 銑刀端面三維影像重建與分析 54 第五章 結論 65 第六章 未來工作 66 第七章 參考文獻 70 附錄一 刀具規格 73 附錄二 相機規格 74 附錄三 鏡頭規格 75 附錄四 DMD規格 76 附錄五 LED光源規格 77 附錄六 物鏡規格 79 附錄七 共軛焦顯微鏡規格 80 附錄八 結構光重建程式 81

    [1] EP DeGarmo, JT Black, RA Kohser, BE Klamecki. John Wiley & Sons Inc .
    [2] Taylor Frederick Winslow. 1907. On the Art of Cutting Metals. The American Society of Mechanical Engineers. New York.
    [3] İrfan Ucuna, Kubilay Aslantas, FevziBedir. 2013. An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy. Wear 300(1–2): 8-19.
    [4] Organization(ISO). 1989. Tool Life Testing in Milling—Part 2: End Milling.
    [5] S. Kakade, L. Vijayaraghavan, R. Krishnamurthy. 1994. Materials Processing Technology 44(3-4):207-214.
    [6] K. Jemielniak, O. Otman. 1998. Tool failure detection based on analysis of
    [7] Jehnming Lin. 1995. Inverse estimation of the tool-work interface temperature in end milling. Machine Tools and Manufacture 35(5): 751-760.
    [8] H.V. Ravindra, Y.G. Srinivasa, R. Krishnamurthy. 1993. Modelling of tool wear based on cutting forces in turning. Wear 169(1): 25-32.
    [9] S. Klancnik, M. Ficko, J. Balic, I. Pahole. 2015. Computer vision-based approach to end mill tool monitoring. Int j simul model 14(4): 571-583.
    [10] J. Barreiro et al. 2007. On-line tool wear monitoring using geometric descriptors from digital images. Machine Tools and Manufacture 47(12-13): 1847-1853.
    [11] C. Zhang, J. Zhang. 2013. On-line tool wear measurement for ball-end milling cutter based on machine vision. Computers in industry 64(6): 708-719.
    [12] 謝秉澂,王俊傑. 2016. 整合刀庫系統之具磨耗自動檢測技術. 機械工業雜誌 396期3月號.
    [13] K. Uehara et al. 1996. An In-Process Direct Monitoring Method for Milling Tool Failures Using a Laser Sensor. CIRP Annals 45(1): 97-100.
    [14] K. Niranjan Prasad, B. Ramamoorthy. 2001. Tool wear evaluation by stereo vision and prediction by artificial neural network. Materials Processing Technology 112(1): 43-52.
    [15] A.Karthik, S.Chandra, B.Ramamoorthy, S.Das. 1997. 3D tool wear measurement and visualisation using stereo imaging. Machine Tools and Manufacture 37(11): 1573-1581.
    [16] S. Wei, S. Wang, C. Zhou, K Liu, X Fan. 2015. Binocular vision measurement using Dammann grating. Applied Optics 54(11): 3246-3251.
    [17] S. Zhang. 2005. High-resolution, Real-time 3-D Shape Measurement. Doctoral dissertation. Stony Brook University Mechanical Engineering.
    [18] W.H. Wang, YS Wong, GS Hong. 2006. 3D measurement of crater wear by phase shifting method. Wear 261(2): 164-171.
    [19] X. Bian, F. Zuo, J. Cheng. 2018. Analysis of a new phase and height algorithm in phase measurement profilometry. Optical Review 25(2): 190-196.
    [20] Jim Schwiegerling. 2014. Optical Specification, Fabrication, and Testing.
    [21] Munther A. Gdeisat et al. 2002. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied Optics 41(35): 7437-7444.
    [22] M. F. Kasim. 2017. Fast 2D phase unwrapping implementation in MATLAB. https://github.com/mfkasim91/unwrap_phase/
    [23] S. Zhang, PS Huang. 2006. Novel method for structured light system calibration. Optical Engineering 45(8).
    [24] Z. Zhang. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11): 1330-1334.
    [25] Camera Calibration Toolbox for Matlab, Jean-Yves Bouguet, 2010
    [26] G. Falcao, N. Hurtos, J. Massich. 2008. Plane-based calibration of a projector-camera system. VIBOT master.
    [27] G. Falcao, N. Hurtos, J. Massich, D. Fofi. 2009. Projector-Camera Calibration Toolbox. http://code.google.com/p/procamcalib.

    QR CODE