簡易檢索 / 詳目顯示

研究生: 吳美儀
論文名稱: 利用超臨界CO2配搭超聲波及過氧化氫前處理狼尾草
Pretreatment of Napiergrass by Supercritical CO2 Combined with Ultrasound and Hydrogen Peroxide
指導教授: 談駿嵩
口試委員: 陳郁文
賴慶智
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 62
中文關鍵詞: 超臨界CO2前處理超聲波過氧化氫實驗設計能耗模擬
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生質酒精為綠色能源發展的重點,利用纖維素作為生質酒精的原料來源是近年來的研究方向之一。由於生質物料的木質纖維素結構緻密、不易分解,間接阻礙了酵素對纖維素的水解效果及糖類發酵製程,利用有效的前處理方法可破壞生質物料結構並解決上述問題。本研究以狼尾草 (Napiergrass, Pennisetum purpureum)作為生質酒精製程的纖維素來源,以超臨界CO2前處理為主,另以超臨界CO2為介質配搭超聲波於高壓系統內進行物理性前處理,並嘗試利用超臨界CO2前處理再配搭過氧化氫進行化學性前處理。研究中首先利用美國國家再生能源實驗室 (National Renewable Energy Laboratory, NREL)標準方法水解未經處理之狼尾草,並將檢測值視為糖類總組成含量。經不同前處理後之狼尾草則透過酵素水解分析,將其值除以糖類總組成含量視為糖類糖化率,並利用糖類糖化率判定前處理效果。透過實驗設計可得狼尾草經超臨界CO2前處理之最佳操作條件,在溫度180 oC、壓力3500 psi、液固比為4以及處理時間為75分鐘時,可得葡聚糖糖化率為39%,並且可知溫度為最顯著影響因子。此外,研究中亦嘗試以超臨界CO2為介質配搭超聲波於高壓系統內進行物理性前處理,由於超聲波需要高密度之介質傳遞能量,因此實驗皆採低溫高壓之操作方式,然而其葡聚糖糖化率提升效果不明顯。另一方面,若以超臨界CO2前處理再配搭過氧化氫化學性前處理,其葡聚糖糖化率為未處理狼尾草原料的3倍,約46%。在表面結構分析方面,透過掃描式電子顯微鏡 (Scanning electron microscopy, SEM)可觀察出狼尾草表面經不同前處理後均有開放性破壞的現象。最後利用商業軟體Aspen Plus進行狼尾草經超臨界CO2前處理放大製程之穩態模擬,計算超臨界CO2前處理程序所需能源之消耗,可得總操作成本為26.4 $/tonne dry biomass及49.0 $/tonne dry biomass,與文獻中不同前處理總操作成本 (19~60 $/tonne dry biomass)相比較,超臨界CO2前處理程序是具競爭力。


    摘要 I 目錄 III 表目錄 VI 圖目錄 VI 一、 緒論 1 二、 文獻回顧 4 2-1生質酒精 4 2-2生質物料 5 2-3木質纖維素組成 5 2-3-1纖維素 6 2-3-2半纖維素 6 2-3-3木質素 6 2-4前處理技術 7 2-4-1超臨界CO2前處理 8 2-4-2超聲波前處理 9 2-4-3過氧化氫前處理 11 2-5纖維素酵素水解 12 2-6反應曲面實驗設計法 13 2-7分析儀器 15 2-7-1掃描式電子顯微鏡分析 15 2-7-2高效液相層析與折射率分析 16 三、 實驗方法 26 3-1實驗設備與藥品 26 3-1-1實驗設備 26 3-1-2實驗藥品 28 3-2實驗裝置與步驟 29 3-2-1以超臨界CO2配搭超聲波進行狼尾草前處理 29 3-2-2反應曲面實驗設計法-超臨界CO2前處理 30 3-2-3過氧化氫前處理 30 3-2-4 NREL (LAP-002)糖類標準檢驗法 31 3-2-5葡聚糖回收率與木聚糖回收率定義 31 3-2-6酵素水解 32 3-2-7葡聚糖糖化率定義 33 3-2-8實驗流程 33 四、 實驗結果與討論 37 4-1前處理後狼尾草表面結構分析 37 4-2實驗設計-超臨界CO2前處理 38 4-2-1狼尾草總組成成份分析 38 4-2-2酵素水解結果 39 4-3超臨界CO2配搭其他前處理 41 4-3-1超臨界CO2配搭超聲波前處理 41 4-3-2超臨界CO2配搭過氧化氫前處理 42 4-4利用Aspen Plus V7.3模擬超臨界CO2前處理能源之消耗 43 五、 結論與建議 55 參考文獻 56

    Aiello, C.; Ferrer, A. and Ledesma, A. “Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414,” Bioresour. Technol. 57, 13-18, 1996.
    Alinia, R.; Zabihi, S.; Esmaeilzadeh, F. and Kalajahi, J. F. “Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production” Biosys. Eng. 107, 61-66, 2010.
    Alvira, P.; Tomás-Pejó, E.; Ballesteros, M. and Negro, M. J. “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review” Bioresour. Technol. 101, 4851-4861, 2010.
    Béguin, P. “Cloning of cellulase gene” Crit. Rev. Biotechnol. 6, 129-162, 1987.
    Benazzi, T.; Calgaroto, S.; Astolfi, V.; Rosa, C. D.; Oliveira, J. V. and Mazutti, M. A. “Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis” Enzyme Microb. Technol. 52, 247-250, 2013.
    Bhat, M. K. and Bhat, S. “Cellulose degrading enzymes and their potential industrial applications” Biotechnol. Adv. 15, 583-620, 1997.
    Bisaria, V. S. and Ghose, T. K. “Biodegradation of Cellulosic Materials – Substrates” Microorganisms, Enzymes and Products, Enzyme Microb. Technol. 3, 90-104, 1981.
    Bisaria, V. S. and Mishra, S. “Regulatory Aspects of Cellulase Biosynthesis and Secretion” Crit. Rev. Biotechnol. 9, 61-103, 1989.
    Bobleter, O. “Hydrothermal degradation of polymers derived from plants” Polym. Sci. 19, 797-841, 1994.
    Buchanan, B. B.; Gruissem, W. and Jones, R. L. “Biochemistry and Molecular Biology of Plants” American Society of Plant Biologists, Rockville, Maryland, 2000.
    Burden, D.W. and Whitney, D.B. “Biotechnology: Proteins to PCR. A Course in
    Strategy and Lab Techniques” Birkhauser, Boston, MA, 43-47, 1995.
    Bussemaker, M. J. and Zhang, D. “Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications” Ind. Eng. Chem. Res. 52, 3563-3580, 2013.
    Chang, C.-W.; Yu, W.-C.; Chen, W.-J.; Chang, R.-F. and Kao, W.-S. “A study on the enzymatic hydrolysis of steam exploded Napiergrass with alkaline treatment using artificial neural networks and regression analysis” Journal of the Taiwan Institute of Chemical Engineers, 42, 889-894, 2011.
    Chuang, M-H. and Johannsen, M. “Characterization of pH in aqueous CO2-systems” in: Proceedings of the 9th International Symposium on Supercritical Fluids, 2009.
    Conde-Mejíaa, C.; Jiménez-Gutiérreza, A. and El-Halwagi, M. “A comparison of pretreatment methods for bioethanol production from lignocellulosic materials” Process Saf. Environ. Prot. 90, 189-202, 2012.
    Correia, J. A. C.; Júnior, J. E. M.; Gonçalves, L. R. B. and Rocha, M. V. P. “Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: Study of parameters” Bioresour. Technol. 139, 249-256, 2013.
    Cosgrove, D. J. “Cell Walls: Structures, Biogenesis, and Expansion. In: Plant Physiology.” In L. Taiz and E. Zeiger, eds. Sunderland: Sinauer Associates, Inc. 1998.
    Galbe, M. and Zacchi, G. “Pretreatment: The key to efficient utilization of lignocellulosic” Biomass Bioenergy, 46, 70-78, 2012.
    Gao, M.; Xu, F.; Li, S.; Ji, X.; Chen, S. and Zhang, D. “Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion” Biosys. Eng. 106, 470-475, 2010.
    Ghose, T. K. “Cellulase biosynthesis and hydrolysis of cellulosic substances” Advances in biochemical engineering, Berlin: Springer-Verlag, 6, 39-74, 1976.
    Gould, J. M. “Studies on the mechanism of alkaline peroxide delignification of agricultural residues” Biotechnol. Bioeng. 27, 225-231, 1985.
    Gu, T. “Green biomass pretreatment for biofuels production” Springer, Berlin-New York, 2013.
    Hendriks, A.T.W.M. and Zeeman, G. “Pretreatments to enhance the digestibility of lignocellulosic biomass” Bioresour. Technol. 100, 10-18, 2009.
    Hsu, T. A.; Ladisch, M. R. and Tsao, G. T. Alcohol from cellulose, Chemical Technol. 10, 315-319, 1980.
    Kim, K. H. and Hong, J. “Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis” Bioresour. Technol. 77, 139-144, 2001.
    King, J. W.; Srinivas, K.; Guevara, O.; Lu, Y.-W.; Zhang, D. and Wang, Y.-J. “Reactive high pressure carbonated water pretreatment prior to enzymatic saccharification of biomass substrates” J. Supercrit. Fluids, 66, 221-231, 2012.
    Kumar, P.; Barrett, D. M.; Delwiche, M. J. and Stroeve, P. “Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production” Ind. Eng. Chem. Res. 48, 3713-3729, 2009.
    Limayem, A. and Ricke, S. C. “Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects” Prog. Energy Combust. Sci. 38, 449-467, 2012.
    Mazza, G. and Fu, D. “Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid” Bioresour. Technol. 102, 8003-8010, 2011.
    Mishima, D.; Tateda, M.; Ike, M. and Fujita, M. “Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes” Bioresour. Technol. 97, 2166-2172, 2006.
    Moniruzzaman, M. “Saccharification and alcohol fermentation of steam-exploded rice straw” Bioresour. Technol. 55, 111-117, 1996.
    Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M. and Ladisch, M. “Features of promising technologies for pretreatment of lignocellulosic biomass” Bioresour. Technol. 96, 673-686, 2005.
    Murphy, L.; Borch, K.; McFarland, K.C.; Bohlin, C. and Westh, P. “A calorimetric assay for enzymatic saccharification of biomass” Enzyme Microb. Technol. 46, 141-146, 2010.
    Narayanaswamy, N. “Supercritical carbon dioxide pretreatment of various lignocellulosic biomasses” Ohio university, department of chemical and biomolecular, 2010.
    Narayanaswamy, N.; Faik, A.; Goetz D. J. and Gu, T. “Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production” Bioresour. Technol. 102, 6995-7000, 2011.
    Nikolic´, S.; Mojovic´, L.; Rakin, M.; Pejin, D. and Pejin, J. “Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal” Food. Chem. 122, 216-222, 2010.
    Parveen, K.; Barrett, D. M.; Delwiche, M. J. and Stroeve, P. “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production” Ind. Eng. Chem. Res. 48, 3713-3729, 2009.
    Pejin, D. J.; Mojovi´c, L. V.; Pejin, J. D.; Gruji´c, O. S.; Markov, S. L.; Nikoli´c, S. B. and Markovi´c, M. N. “Increase in bioethanol production yield from triticale by simultaneous saccharification and fermentation with application of ultrasound” J. Chem. Technol. Biotechnol. 87, 170-176, 2012.
    Saha, B. C. “Hemicellulose bioconversion” J. Ind. Microbiol. Biotechnol. 30, 279-291, 2003.
    Santos, A. L. F.; Kawase, K. Y. F. and Coelho, G. L. V. “Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide” J. Supercrit. Fluids, 56, 277-282, 2011.
    Schacht, C.; Zetzl, C. and Brunner, G. “From plant materials to ethanol by means of supercritical fluid technology” J. Supercrit. Fluids. 46, 299-321, 2008.
    Shen, G.; Tao, H.; Zhao, M.; Yang, B.; Wen, D.; Yuan, Q. and Rao, G. “Effect of hydrogen peroxide pretreatment on the enzymatic hydrolysis of cellulose” J. Food Process Eng. 34, 905-921, 2011.
    Silverstein, R. A.; Chen, Y.; Sharma-Shivappa, R. R.; Boyette, M. D. and Osborne, J. “A comparison of chemical pretreatment methods for improving saccharification of cotton stalks” Bioresour. Technol. 98, 3000-3011, 2007.
    Srinivasan, N. and Ju, L.-K. “Statistical optimization of operating conditions for supercritical carbon dioxide-based pretreatment of guayule bagasse” Biomass Bioenergy, 47, 451-458, 2012.
    Srinivasan, N. and Ju, L.-K. “Pretreatment of guayule biomass using supercritical carbon dioxide-based method” Bioresour. Technol. 101, 9785-9791, 2010.
    Sun, Y. and Cheng, J. J. “Hydrolysis of lignocellulosic materials for ethanol production: a review” Bioresour. Technol. 83, 1-11, 2002.
    Suslick, K. S. “Sonoluminescence and Sonochemistry” In Encyclopedia of Physical Science and Technology, 3rd Ed, Academic Press 15, 363-376, 2002.
    Toor, S. S.; Rosendahl, L. and Rudolf, A. “Hydrothermal liquefaction of biomass: A review of subcritical water technologies” Energy. 36, 2328-2342, 2011.
    Wooley, R. J. and Putsche, V. “Development of an ASPEN PLUS physical property database for biofuels components” Nrel/Mp-425-50685. Golden, Colorado National Labaratory of the U.S. Deparment of Energy, pp. 1-38, 1996.
    Yachmenev, V.; Condon, B. D.; Klasson, K. T. and Lambert, A. H. “Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound” J. Biobased Mater. Bioenergy, 3, 25-31, 2009.
    Yunus, R.; Salleh, S. F.; Abdullah, N. and Biak, D. R. A. “Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch” Bioresour. Technol. 101, 9792-9796, 2010.
    Zheng, Y.; Lin, H.-M. and Tsao, G.T. “Pretreatment for cellulose hydrolysis by carbon dioxide explosion” Biotechnol. Prog. 14, 890-896, 1998.
    Zhu, J. Y.; Pan, X. J.; Wang, G. S. and Gleisner, R. “Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine” Bioresour. Technol. 100, 2411-2418, 2009.
    古森本,“生質能源作物之開發與潛力”,植物種苗生技,第13期,P.46-53,2008
    行政院農業委員會畜產試驗所,http://www.tlri.gov.tw/
    成游貴,“狼尾草新品種台畜草二號介紹”,畜產專訊,第16期,P.1,2003
    沈明來,“試驗設計學”,九州書局,1997
    周昌弘,“台灣芒萃植物生態研究的回顧與前瞻”,中華民國雜草學會簡訊,第2期,1995
    林祐生,李文乾,“生質酒精”,科學發展,第433期,P.20-25,2009
    林威廷,“利用超臨界二氧化碳與超音波前處理狼尾草與甘蔗渣”,碩士論文,國立清華大學化學工程研究所,2012
    陳文恆,郭家倫,黃文松,王嘉寶,“纖維素酒精技術之發展”,農業生技產業季刊,第9期,P.62-69,2009
    陳怡傑,“以厭氧流體化床進行廚餘過篩液及狼尾草之氫發酵程序研究”,碩士
    論文,國立成功大學環境工程學系,2009
    陳盧亮,“我國狼尾草屬牧草主栽品種特性介紹”,中國奶牛,2012
    齊倍慶,“從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究”,碩士論文,國立清華大學生命科學系,2000
    黎正中編譯,“實驗設計與分析”,高立圖書有限公司,2010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE