簡易檢索 / 詳目顯示

研究生: 李珣
Li, Hsun
論文名稱: Spatiotemporal Receptive Fields of Alpha Ganglion Cells in the Developing Rabbit Retina
發育中兔子視網膜內Alpha節細胞時空感受域的成熟過程
指導教授: 焦傳金
Chiao, Chuan-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 視網膜節細胞感受域發育
外文關鍵詞: retina ganglion cell, receptive field, development
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Previous studies showed that rabbit retinal ganglion cells (RGCs) are responsive to light stimuli at around eye opening (postnatal day P10-11), and some of their physiological features (e.g., concentric receptive field antagonism) are also present at this developmental stage. However, active morphological remodeling of RGCs and fine tuning of their receptive fields are still continuing to proceed after eye opening. Thus, I investigated the physiological and morphological properties of RGCs throughout development, and attempted to examine the correlation between these two aspects. Ganglion cells from isolated retinas of New Zealand White rabbits were studied at three postnatal stages. The spatiotemporal receptive field properties of the alpha RGCs were characterized using the white noise stimuli, and the corresponding spike triggered average (STA) results were analyzed. After extracellular recording, the alpha cells were injected with dye to allow a direct comparison between the morphological pattern and their spatial STA profiles. The results showed that the maturation of STA time course is a gradual process during the development, that is, alpha RGCs gradually decrease their stimulus integration time from P10-14 to P20-23 then to adult. In addition, the robustness of the alpha RGC response to light stimulation is also developmentally modulated, and its main effect occurs before P20. Furthermore, moderate correlations between spatial STA profiles and dendritic densities of both ON and OFF alpha RGCs do not change throughout development. Taken together, these results support that some functional properties of RGCs are indeed still developing even after eye-opening, and reveal that the morphological refinement of RGCs is independent of their physiological maturation. Given the fact that the ribbon synapses also develop at the same stages in the mammalian retina and their involvement in regulating response dynamics, it is likely that the changes of some functional properties of RGCs depend on the development of ribbon synapse.


    先前的研究指出,約在兔子睜開眼睛的時期,兔子視網膜節細胞就能對光刺激產生反應,在這個發育階段,視網膜節細胞已展現一些生理特性(例如感受域的同中心結抗性)。然而在兔子開眼後,視網膜節細胞會持續經歷細胞形態改變,以及感受域的微調整。因此本研究主要在檢視發育過程中,視網膜節細胞的生理功能和形態特性,並嘗試研究兩者之間的關係。從分屬三個不同發育時期的紐西蘭白兔取得實驗所用的視網膜後,利用白噪音視覺刺激引發視網膜節細胞反應,由胞外記錄的方式量測,經分析可得到觸發神經衝動的平均刺激,以代表視網膜節細胞的時空感受域。其後利用染劑注射視網膜節細胞,得到細胞形態來和平均刺激的空間結構互相比較。結果顯示,平均刺激的時間特性,會漸進地成熟;在出生後約兩週到三週、及三週後,alpha 視網膜節細胞所需對光刺激的整合時間,會逐漸減少。此外,對於光刺激產生穩定反應的能力,也會在出生後三週左右發生調整。然而,平均刺激的空間結構,和細胞樹突密度的關連程度不高,發育過程中也無明顯改變。所以本研究的結果顯示,視網膜節細胞的一些生理功能,在動物開眼後仍會繼續發育,但和細胞形態的微調無關。既然已知哺乳類視網膜中的緞帶突觸,會在相近的發育階段趨於成熟,因此,這些視網膜生理功能的改變,很可能是和緞帶突觸的發育有關。

    摘要.......................................................i Abstract..................................................ii 誌謝.....................................................iii 1.Introduction.............................................1 1.1 Classical receptive field of retinal ganglion cells in vertebrate retina..........................................1 1.2 Spatiotemporal receptive field of retina ganglion cell.......................................................2 1.3 Development of retinal ganglion cells in the rabbit retina.....................................................3 1.4 Goals and summary......................................4 2. Materials and Methods...................................6 2.1 Retina preparation.....................................6 2.2 Visual Stimuli.........................................7 2.3 Extracellular recording................................9 2.4 Intracellular dye injection............................9 2.5 Image acquisition.....................................10 2.6 Data analysis.........................................11 3. Results................................................14 3.1 Temporal STA of ON and OFF alpha cells show broader time course pattern and lower STA value before P20........15 3.2 Characteristics of temporal STA of ON and OFF alpha cells changed during development reveal functional maturation of retina......................................17 3.3 Spatiotemporal STA of ON and OFF alpha cells at different developmental stages............................18 3.4 Characteristics of spatiotemporal STA of ON and OFF alpha cells alter during development......................20 3.5 Correlation between spatial STA values and dendritic densities of developing ON and OFF alpha RGCs.............21 4. Discussions............................................23 4.1 Temporal properties of STA in alpha RGCs that gradually develop after eye-opening correlate with the maturation process of the ribbon synapses in relaying excitatory signals in the retina.....................................23 4.2 Strength of STA increasing at P20-23 stage implies that the robustness of alpha RGC response to light stimulation is developmentally modulated..............................25 4.3 Different results of temporal STA and spatiotemporal STA show possible variant temporal and/or spatial properties in alpha RGC receptive fields..................26 4.4 Moderate correlations between spatial STA values and dendritic densities of ON and OFF alpha RGCs do not change throughout different developmental stages.................27 5. References.............................................30 6. Table..................................................33 Table 1. Correlation coefficients of spatial STA values and dendrite densities........................................33 7. Figures................................................34 Figure 1. Diagram of experimental setup and the visual stimulus used.............................................34 Figure 2. Temporal STA of ON and OFF alpha cells from different developmental stages............................36 Figure 3. Characteristics of temporal STA of ON and OFF alpha cells change during development, indicating that physiological function of ON and OFF RGCs still develop after eye-opening at P10..................................38 Figure 4. Spatiotemporal STA of ON and OFF alpha cells alter at different developmental stages...................40 Figure 4. Spatiotemporal STA of ON and OFF alpha cells alter at different developmental stages. (continued)......42 Figure 5. Characteristics of spatiotemporal STA of ON and OFF alpha cells alter during development..................43 Figure 6. Correlation between spatial STA values and dendritic densities of developing ON and OFF alpha cells..45 Figure 7. Model for functional maturation of alpha RGC during development........................................47 8. Appendixes.............................................49 Appendix 1. The classical center-surround organization of receptive fields in ON and OFF alpha RGCs at different development stages were not different after eye-opening of the rabbits...............................................49 Appendix 2. The methods of defining the effective frames in whole series of spatiotemporal STA results, and the calculation of dendritic densities of RGC.................52 Appendix 3. Distribution of dendritic densities and STA values of each ON and OFF alpha cells at different development stages........................................53

    Ames A, 3rd & Nesbett FB. (1981). In vitro retina as an experimental model of the central nervous system. J Neurochem 37, 867-877.
    Amthor FR, Oyster CW & Takahashi ES. (1984). Morphology of on-off direction-selective ganglion cells in the rabbit retina. Brain Res 298, 187-190.
    Amthor FR, Takahashi ES & Oyster CW. (1989a). Morphologies of rabbit retinal ganglion cells with complex receptive fields. J Comp Neurol 280, 97-121.
    Amthor FR, Takahashi ES & Oyster CW. (1989b). Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J Comp Neurol 280, 72-96.
    Barlow HB & Hill RM. (1963). Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412-414.
    Barlow HB, Hill RM & Levick WR. (1964). Retinal Ganglion Cells Responding Selectively to Direction and Speed of Image Motion in the Rabbit. J Physiol 173, 377-407.
    Bowe-Anders C, Miller RF & Dacheux R. (1975). Developmental characteristics of receptive organization in the isolated retina-eyecup of the rabbit. Brain Res 87, 61-65.
    Brown SP, He S & Masland RH. (2000). Receptive field microstructure and dendritic geometry of retinal ganglion cells. Neuron 27, 371-383.
    Chan YC & Chiao CC. (2008). Effect of visual experience on the maturation of ON-OFF direction selective ganglion cells in the rabbit retina. Vision Res 48, 2466-2475.
    Chen M, Weng S, Deng Q, Xu Z & He S. (2009). Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina. J Physiol 587, 819-828.
    Chichilnisky EJ. (2001). A simple white noise analysis of neuronal light responses. Network 12, 199-213.
    Chichilnisky EJ & Baylor DA. (1999). Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat Neurosci 2, 889-893.
    Cleland BG & Levick WR. (1974). Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol 240, 421-456.
    Dacheux RF & Miller RF. (1981). An intracellular electrophysiological study of the ontogeny of functional synapses in the rabbit retina. I. Receptors, horizontal, and bipolar cells. J Comp Neurol 198, 307-326.
    Deich C, Seifert B, Peichl L & Reichenbach A. (1994). Development of dendritic trees of rabbit retinal alpha ganglion cells: relation to differential retinal growth. Vis Neurosci 11, 979-988.
    Devries SH & Baylor DA. (1997). Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol 78, 2048-2060.
    Dong CJ & Hare WA. (2000). Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina. Vision Res 40, 579-589.
    Elstrott J, Anishchenko A, Greschner M, Sher A, Litke AM, Chichilnisky EJ & Feller MB. (2008). Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 58, 499-506.
    Gorfinkel J & Lachapelle P. (1990). Maturation of the photopic b-wave and oscillatory potentials of the electroretinogram in the neonatal rabbit. Can J Ophthalmol 25, 138-144.
    Gorfinkel J, Lachapelle P & Molotchnikoff S. (1988). Maturation of the electroretinogram of the neonatal rabbit. Doc Ophthalmol 69, 237-245.
    Gurevich L & Slaughter MM. (1993). Comparison of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res 33, 2431-2435.
    Heidelberger R, Heinemann C, Neher E & Matthews G. (1994). Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513-515.
    Jakobs TC, Koizumi A & Masland RH. (2008). The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. J Comp Neurol 510, 221-236.
    Kuffler SW. (1953). Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16, 37-68.
    Levick WR. (1972). Another tungsten microelectrode. Med Biol Eng 10, 510-515.
    Masland RH. (1977). Maturation of function in the developing rabbit retina. J Comp Neurol 175, 275-286.
    Masland RH. (2001). The fundamental plan of the retina. Nat Neurosci 4, 877-886.
    McArdle CB, Dowling JE & Masland RH. (1977). Development of outer segments and synapses in the rabbit retina. J Comp Neurol 175, 253-274.
    Peichl L, Buhl EH & Boycott BB. (1987). Alpha ganglion cells in the rabbit retina. J Comp Neurol 263, 25-41.
    Reid RC, Victor JD & Shapley RM. (1997). The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci 14, 1015-1027.
    Reuter JH. (1976). The development of the electroretinogram in normal and light-deprived rabbits. Pflugers Arch 363, 7-13.
    Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M, Miyata K, Funabiki K, Koyasu T, Kajimura N, Miyoshi T, Sawai H, Kobayashi K, Tani A, Toda T, Usukura J,
    Tano Y, Fujikado T & Furukawa T. (2008). Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 11, 923-931.
    Shingai R, Hida E & Naka K. (1983). A comparison of spatio-temporal receptive fields of ganglion cells in the retinas of the tadpole and adult frog. Vision Res 23, 943-950.
    Sterling P & Matthews G. (2005). Structure and function of ribbon synapses. Trends Neurosci 28, 20-29.
    Tian N & Copenhagen DR. (2001). Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron 32, 439-449.
    tom Dieck S & Brandstatter JH. (2006). Ribbon synapses of the retina. Cell Tissue Res 326, 339-346.
    Tootle JS. (1993). Early postnatal development of visual function in ganglion cells of the cat retina. J Neurophysiol 69, 1645-1660.
    Wassle H. (2004). Parallel processing in the mammalian retina. Nat Rev Neurosci 5, 747-757.
    Wong RO. (1990). Differential growth and remodelling of ganglion cell dendrites in the postnatal rabbit retina. J Comp Neurol 294, 109-132.
    Wong RO & Godinho L. (2003). Development of the Vertebrate Retina. In The visual neurosciences, ed. Chalupa LM & Werner JS, pp. 77. The MIT Press.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE