研究生: |
陳冠宇 Chen, Guan-Yu |
---|---|
論文名稱: |
不同形態FeTe單層成長於拓樸絕緣體Bi2Te3之研究 Research on Different Phases of FeTe Monolayer Grown on Topological Insulator Bi2Te3 |
指導教授: |
徐斌睿
Hsu, Pin-Jui |
口試委員: |
蘇蓉容
Su, Jung-Jung 陸大安 Luh, Dah-An |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 馬約拉那準粒子 、磁性拓樸絕緣體 、拓樸超導體 |
外文關鍵詞: | Majorana quasiparticle, magnetic topological insulator, topological superconductor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
馬約拉那準粒子(Majorana quasiparticle)儼然是目前凝態物理學中的聖杯。同時身為自身的反粒子,遵守奇特物理規律的馬約拉那準粒子被認為是未來量子運算發展中最吸引人的候選者。雖然目前已有許多理論提出可能會出現馬約拉那準粒子的系統,例如將磁性材料與s波超導體組合後可能產生的p波超導體,又或是磁性拓樸絕緣體可能承載的軸子(axion),實驗上我們仍然需要探索更多更廣的可能性及證據,才能循序漸進地揭開此聖杯的真相。本研究利用低溫掃描穿隧顯微鏡及掃描穿隧能譜測量不同形態的FeTe單層成長在拓樸絕緣體Bi2Te3基板上,這些形態包含新發現的六方形態FeTe (hexagonal FeTe)和條紋形態FeTe (stripe FeTe),以及已知的四方形態FeTe
(tetragonal FeTe)。其中六方形態FeTe和條紋形態FeTe在Bi2Te3上各自出現疊紋圖樣(moiré pattern),我們藉由模擬FeTe與Bi2Te3的原子解析形貌,成功得出疊紋圖樣可能的原子模型。除了不同形態FeTe的分析,我們也發現六方形態FeTe和條紋形態FeTe會因後退火的過程逐漸轉變為四方形態FeTe,說明此兩種形態可能為四方形態FeTe的前指標(precursor)。受四方形態FeTe在Bi2Te3上已知具有超導性和雙共線(bi-collinear)反鐵磁性的特性而啟發,我們希望新發現的六方形態FeTe和條紋FeTe能提供磁性拓樸絕緣體及拓樸超導體更多的可能性,在追尋馬約拉那準粒子的路上付出微小的貢獻。
The Majorana quasiparticle is currently the Holy Grail of condensed matter physics. As its own antiparticle, the Majorana quasiparticle, which follows unusual physical laws, is considered to be the most attractive candidate for the development of quantum computing in the future. Although many theories have proposed systems in which Majorana quasiparticle may appear, such as the p-wave superconductor produced by combining magnetic materials with s-wave superconductors, or the magnetic topological insulator that may carry anyon, we still need to explore more and wider possibilities and evidences in experiments, in order to gradually reveal the truth of the Holy Grail. In this study, low-temperature scanning tunneling microscopy and scanning tunneling spectroscopy were used to measure different phases of FeTe monolayers grown on the topological insulator Bi2Te3 substrate. These phases include the newly discovered hexagonal FeTe and stripe FeTe, and already-known tetragonal FeTe. Among them, hexagonal FeTe has a moiré pattern with a hexagonal lattice on Bi2Te3, and the stripe FeTe also has a more complicated orthorhombic lattice as moiré pattern. Based on their atomic-resolution topographies, we have also successfully simulated the possible atomic models of the moiré patterns that appear on hexagonal FeTe and stripe FeTe. In addition to the analysis of different phases of FeTe, we also found that hexagonal FeTe and stripe FeTe will gradually transform into tetragonal FeTe due to the post-annealing process, indicating that these two phases may be the precursors of tetragonal FeTe. Inspired by the superconductivity and bi-collinear antiferromagnetism of tetragonal FeTe on Bi2Te3, we hope that the newly discovered hexagonal FeTe and stripe FeTe grown on Bi2Te3 provides more possibilities for magnetic topological insulators and topological superconductors, and make a tiny contribution to the pursuit of the Majorana quasiparticle.
[1] E. H. Hall. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3):287–292, 1879. ISSN 00029327, 10806377. URL http://www.jstor.org/stable/2369245.
[2] H. Ibach and H. Lüth. Solid-State Physics: An Introduction to Principles of Materials Science. Springer Berlin Heidelberg, 2009. ISBN 9783540938040. URL https://link.springer.com/book/10.1007/978-3-540-93804-0.
[3] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 45:494–497, 1980. doi: 10.1103/PhysRevLett.45.494. URL https://link.aps.org/ doi/10.1103/PhysRevLett.45.494.
[4] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405–408, Aug 1982. doi: 10.1103/PhysRevLett.49.405. URL https://link.aps.org/doi/10. 1103/PhysRevLett.49.405.
[5] 木村初男, 服部真澄, 山下護, and 杉山勝. 中野藤生先生インタビュー~線
形 応 答 理 論 か ら 半 世 紀 を 経 て ~(特 別 企 画). 物 性 研 究, 84(2), 5 2005. URL http://hdl.handle.net/2433/110179.
[6] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802): 45–57, 1984. ISSN 00804630. URL http://www.jstor.org/stable/2397741.
[7] Shiing-Shen Chern. A simple intrinsic proof of the gauss-bonnet formula for closed riemannian manifolds. Annals of Mathematics, 45(4):747–752, 1944. ISSN 0003486X. URL http://www.jstor.org/stable/1969302.
[8] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett., 95:146802, Sep 2005. doi: 10.1103/PhysRevLett.95.146802. URL https: //link.aps.org/doi/10.1103/PhysRevLett.95.146802.
[9] B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314(5806):1757–1761, 2006. doi: 10.1126/science.1133734. URL https://www.science.org/doi/abs/10.
1126/science.1133734.
[10] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions. Phys. Rev. Lett., 98:106803, Mar 2007. doi: 10.1103/PhysRevLett.98.106803. URL https://link.aps.org/doi/10.1103/PhysRevLett.98.106803.
[11] walekooen. 科 普: 量 子 拓 樸 學 2016 諾 貝 爾 物 理 獎。, 2016. URL https: //walekooen.pixnet.net/blog/post/44292169.
[12] Akihiko Sekine and Kentaro Nomura. Axion electrodynamics in topological materials. Journal of Applied Physics, 129(14):141101, 04 2021. ISSN 0021-8979. doi: 10.1063/5.0038804. URL https://doi.org/10.1063/5.0038804.
[13] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Yu. Vyazovskaya, S. V. Eremeev, Yu. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, Simon Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov. Prediction and observation of an antiferromagnetic topological insulator. Nature, 576:416, 2019. doi: 10.1038/s41586-019-1840-9. URL https://doi.org/10.1038/s41586-019-1840-9.
[14] Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3.
Phys. Rev. B, 81:195203, May 2010. doi: 10.1103/PhysRevB.81.195203. URL https://link.aps.org/doi/10.1103/PhysRevB.81.195203.
[15] Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, Zhong-Qing Ji, Yang Feng, Shuaihua Ji, Xi Chen, Jinfeng Jia, Xi Dai, Zhong Fang, Shou-Cheng Zhang, Ke He, Yayu Wang, Li Lu, Xu-Cun Ma, and Qi-Kun Xue. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129):167–170, 2013.
doi: 10.1126/science.1234414. URL https://www.science.org/doi/abs/10.1126/science.1234414.
[16] Peter Schüffelgen, Tobias Schmitt, Michael Schleenvoigt, Daniel Rosenbach, Pujitha Perla, Abdur R. Jalil, Gregor Mussler, Mihail Lepsa, Thomas Schäpers, and Detlev Grützmacher. Exploiting topological matter for majorana physics and devices. Solid-State Electronics, 155:99–104, 2019. ISSN 0038-1101. doi: https://doi.org/10.1016/j.
sse.2019.03.005. URL https://www.sciencedirect.com/science/article/pii/S0038110118305896. Selected Papers from the Future Trends in Microelectronics (FTM-2018) Workshop.
[17] Liang Fu and C. L. Kane. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 100:096407, Mar 2008. doi: 10.1103/PhysRevLett.100.096407. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.096407.
[18] Gabriel Popkin. Quest for qubits. Science, 354(6316):1090–1093, 2016. doi: 10.1126/science.354.6316.1090. URL https://www.science.org/doi/abs/10.1126/science.354.6316.1090.
[19] Daniel Zeuch. Entangling qubits by Heisenberg spin exchange and anyon braiding. PhD thesis, Florida State University College Of Arts And Science, 2016. URL
https://idm.nthu.ust.edu.tw/sso/886UST_NTHU/saml2/login/?next=/saml2/
idp/login/process/?url=https://www.proquest.com/dissertations-theses/
entangling-qubits-heisenberg-spin-exchange-anyon/docview/1844149019/
se-2.
[20] Manna S., Kamlapure A., Cornils L., Hänke T., Hedegaard E. M. J., Bremholm M., Iversen B. B., Hofmann Ph., Wiebe J., and Wiesendanger R. Interfacial superconductivity in a bi-collinear antiferromagnetically ordered FeTe monolayer on a topological insulator. Nature Communications, 8, 2017. ISSN 2041-1723. URL https://doi.org/10.1038/
ncomms14074.
[21] Chen Mingyang, Chen Xiaoyu, Yang Huan, Du Zengyi, and Wen Hai-Hu. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures. Science Advances, 4(6):eaat1084, 2018. doi: 10.1126/sciadv.aat1084. URL https://www.science.org/doi/abs/10.1126/sciadv.aat1084.
[22] Zhimo Zhang, Min Cai, Rui Li, Fanqi Meng, Qinghua Zhang, Lin Gu, Zijin Ye, Gang Xu, Ying-Shuang Fu, and Wenhao Zhang. Controllable synthesis and electronic structure characterization of multiple phases of iron telluride thin films. Phys. Rev. Mater., 4:125003, Dec 2020. doi: 10.1103/PhysRevMaterials.4.125003. URL https://link.aps.org/doi/10.1103/PhysRevMaterials.4.125003.
[23] Lixing Kang, Chen Ye, Xiaoxu Zhao, Xieyu Zhou, Junxiong Hu, Qiao Li, Dan Liu, Chandreyee Manas Das, Jiefu Yang, Dianyi Hu, Jieqiong Chen, Xun Cao, Yong Zhang, Manzhang Xu, Jun Di, Dan Tian, Pin Song, Govindan Kutty, Qingsheng Zeng, Qundong Fu, Ya Deng, Jiadong Zhou, Ariando Ariando, Fengxiu Miao, Guo Hong, Yizhong Huang, Stephen John Pennycook, Ken‐Tye Yong, Wei Ji, Xiao Renshaw Wang, and Zheng Liu.
Phase-controllable growth of ultrathin 2d magnetic fete crystals. Nature Communications, 11, 2019. URL https://doi.org/10.1038/s41467-020-17253-x.
[24] M Nourmohammadzadeh, M Rahnama, S Jafari, and AR Akhgar. Microchannel flow simulation in transition regime using lattice boltzmann method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
226(2):552–562, 2012. doi: 10.1177/0954406211413959. URL https://doi.org/10.1177/0954406211413959.
[25] Pfeiffer Vacuum GmbH, editor. The Vacuum Technology Book Volume II: Know How Book. Pfeiffer Vacuum GmbH, 2013. URL https://www.pfeiffer-vacuum.com/en/know-how/introduction-to-vacuum-technology/fundamentals/types-of-flow/.
[26] Agilent Technologies, editor. Agilent IDP Dry Scroll Pump Family: TRANSFORMING YOUR NEEDS INTO VACUUM INNOVATIONS. Agilent Technologies,
2017. URL https://www.agilent.com/cs/library/brochures/IDP_Dry_Scroll_
Vacuum_Pumps_5991-7583EN_Brochure_LR.pdf.
[27] 陳家儒. 於單原子層鎳鉛合金與鎳奈米島由鄰近效應所引發之超導態. Master’s
thesis, 國 立 清 華 大 學 物 理 學 系, 2020. URL https://hdl.handle.net/11296/6664g7.
[28] Agilent Technologies. Titanium sublimation combination
ion pumps (tsp), 2023. URL https://www.agilent.com/en/product/vacuum-technologies/ion-pumps-controllers/titanium-sublimation-combination-ion-pumps-tsp/tsp-cartridge.
[29] Sens4. History of the pirani vacuum gauge, 2023. URL https://sens4.com/piranihistory.html.
[30] K. Oura, M. Katayama, A. V. Zotov, V. G. Lifshits, and A. A. Saranin. Growth of Thin Films, pages 357–387. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-662-05179-5. doi: 10.1007/978-3-662-05179-5_14. URL https://doi.org/10.1007/978-3-662-05179-5_14.
[31] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49:57–61, Jul 1982. doi: 10.1103/PhysRevLett.49.57. URL
https://link.aps.org/doi/10.1103/PhysRevLett.49.57.
[32] Amadeo L. Vázquez de Parga and Rodolfo Miranda. Scanning Tunneling Spectroscopy, pages 3544–3553. Springer Netherlands, Dordrecht, 2016. ISBN 978-94-017-9780-1. doi: 10.1007/978-94-017-9780-1_111. URL https://doi.org/10.1007/978-94-017-9780-1_111.
[33] J. Bardeen. Tunnelling from a many-particle point of view. Phys. Rev. Lett., 6:57–59, Jan 1961. doi: 10.1103/PhysRevLett.6.57. URL https://link.aps.org/doi/10.1103/PhysRevLett.6.57.
[34] J. Tersoff and D. R. Hamann. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett., 50:1998–2001, Jun 1983. doi: 10.1103/PhysRevLett.50.1998. URL https://link.aps.org/doi/10.1103/PhysRevLett.50.1998.
[35] J. Tersoff and D. R. Hamann. Theory of the scanning tunneling microscope. Phys. Rev. B, 31:805–813, Jan 1985. doi: 10.1103/PhysRevB.31.805. URL https://link.aps.org/doi/10.1103/PhysRevB.31.805.
[36] N. D. Lang. Spectroscopy of single atoms in the scanning tunneling microscope. Phys. Rev. B, 34:5947–5950, Oct 1986. doi: 10.1103/PhysRevB.34.5947. URL https://link.aps.org/doi/10.1103/PhysRevB.34.5947.
[37] Peter Sutter. Scanning Tunneling Microscopy in Surface Science, pages 1331–1368. Springer International Publishing, Cham, 2019. ISBN 978-3-030-00069-1. doi: 10.1007/978-3-030-00069-1_27. URL https://doi.org/10.1007/978-3-030-00069-1_27.
[38] Celso I. Fornari, Paulo H. O. Rappl, Sérgio L. Morelhão, and Eduardo Abramof. Structural properties of Bi2Te3 topological insulator thin films grown by molecular beam epitaxy on (111) BaF2 substrates. Journal of Applied Physics, 119(16), 04 2016. ISSN 0021-8979.
doi: 10.1063/1.4947266. URL https://doi.org/10.1063/1.4947266. 165303.
[39] Koen Schouteden, Kirsten Govaerts, Jolien Debehets, Umamahesh Thupakula, Taishi Chen, Zhe Li, Asteriona Netsou, Fengqi Song, Dirk Lamoen, Chris Van Haesendonck, Bart Partoens, and Kyungwha Park. Annealing-induced Bi bilayer on Bi2Te3 investigated via quasiparticle-interference mapping. ACS Nano, 10(9):8778–8787, 2016. doi: 10.1021/acsnano.6b04508. URL https://doi.org/10.1021/acsnano.6b04508. PMID: 27584869.
[40] Hailang Qin, Xiaobin Chen, Bin Guo, Tianluo Pan, Meng Zhang, Bochao Xu, Junshu Chen, Hongtao He, Jiawei Mei, Weiqiang Chen, Fei Ye, and Gan Wang. Moiré superlattice-induced superconductivity in one-unit-cell FeTe. Nano Letters, 21(3):1327–1334, 2021. doi: 10.1021/acs.nanolett.0c04048. URL https://doi.org/10.1021/acs.nanolett.0c04048. PMID: 33513015.