簡易檢索 / 詳目顯示

研究生: 林坰青
論文名稱: 利用熱蒸鍍法合成摻雜鋁之氧化鋅奈米結構與特性探討
Synthesis and Properties of Al-doped ZnO Nanostructures by Thermal Evaporation
指導教授: 施漢章
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 摻雜鋁氧化鋅熱蒸鍍陰極激發光
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本工作主要在研究利用熱蒸鍍法蒸鍍鋅粉來合成摻雜鋁的氧化鋅奈米結構並研究其特性,我們分別嘗試了3種不同的方式作為摻雜鋁的來源,分別是在基板上灑佈鋁粉、在基板上濺鍍鋁膜、在鋅粉中添加氯化鋁水溶液,探討不同鋁來源對我們成長氧化鋅的影響並探究是否成功摻雜,本實驗製程在500°C下通入氬氣100 sccm維持氣壓1 Torr合成氧化鋅,升溫速率為每分鐘25°C,到達加熱溫度後始通入氧氣5 sccm,持溫時間為20分鐘。FESEM表面形貌觀察中發現3種不同的氧化鋅奈米結構,由HRTEM觀察中發現氧化鋅晶格常數c為0.5 nm,從Raman光譜分析中可發現本實驗合成之氧化鋅分子振動訊號,陰極激發光譜(Cathodoluminescence spectrum, CL spectrum)顯示出在紫外光範圍皆有很強的訊號,而同時含有黃綠光範圍的訊號之氧化結構則顯示其結構中仍存在有氧空缺的缺陷,藉由化學分析電子儀分析,顯示在灑佈鋁粉基板上所成長的氧化鋅結構是成功摻雜鋁的。


    In this work, aluminum-doped zinc oxide (Al-doped ZnO, AZO) nanostructures were synthesized by the thermal evaporation in a CVD process and characterized. We have tested three different methods of utilizing the sources of the aluminum dopant, namely dispersed Al powder, sputtered Al by DC sputter, and mixed with Zn powder and aluminium chloride solution. The influence of different aluminum sources toward the growth of zinc oxide and the effect of doping aluminum was discussed. Thermally reacted temperature was at 500□C in the furnance (at 1 Torr) with gas flow of 100 sccm Ar and 5 sccm O2. The heated rate was 25°C per minute, and heated time was 20 minutes. From FESEM observation, ZnO nanostructures were found three different morphologies. The lattice constance of c-axis is 0.5 nm. Raman spectrum shows the peak of vibration modes of ZnO. Cathodoluminescence spectrum shows the strong intensity of UV emission and a green emission peak resulted from oxygen vancancies. From XPS analysis, the Al-doped ZnO nanostructures was successfully grew on the Al powder-dispersed substrates.

    總目錄 摘要 I Abstract I 誌謝 III 總目錄 V 圖目錄 II 表目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 1 1.3各章提要 1 第二章 文獻回顧 1 2.1氧化鋅的介紹 1 2.1-1 氧化鋅的特性與晶體結構 1 2.1-2氧化鋅的能帶結構與發光機制 1 2.2氧化鋅的合成 1 2.3特殊的氧化鋅結構介紹與應用 1 2.3-1 奈米環(nanoring)、奈米彈簧(nanospring) 1 2.3-2 奈米消波塊結構(tetrapod-like nanostructure) 1 2.3-3 奈米釘(nanonail)與奈米螺旋(nanoscrew) 1 2.3-4 奈米螺旋槳(nanopropeller) 1 2.3-5 奈米碟 (nanodisk) 1 2.3-6 奈米城堡[24] (nanocastles) 1 2.4氧化鋅的n-type摻雜 1 2.4-1 Zn-Al合金蒸鍍法 1 第三章 實驗方法與步驟 1 3.1實驗方法 1 3.2氧化鋅奈米結構的合成 1 3.3氧化鋅產物的各項分析 1 3.3-1表面形貌分析 1 3.3-1.1場發射掃描式電子顯微鏡(FESEM) 1 3.3-1.2高解析穿透式電子顯微鏡(HRTEM) 1 3.3-2結構成分與性質分析 1 3.3-2.1基板沉積物結構X光繞射﹙XRD﹚分析 1 3.3-2.2拉曼光譜分析(Raman Spectroscopy) 1 3.3-2.3成分分析(energy dispersive spectrometer, EDS) 1 3.3-2.4陰極激發光譜(Cathodoluminescence, CL)量測 1 3.3-2.5化學分析電子儀分析(ESCA) 1 第四章 結果與討論 1 I.不同摻雜方式的影響 1 4.2 奈米螺絲狀(nanoscrew)氧化鋅結構 1 4.2-1 形貌分析 1 4.2-2 結構分析 1 4.2-4 成長機制探討 1 4.3 花狀與柵欄狀(Flower-like and Fences )氧化鋅結構 1 4.3-1形貌分析 1 4.3-2 結構分析 1 4.3-3 性質分析 1 4.3-4 成長機制探討 1 4.4 奈米片狀(nanodisk)氧化鋅結構 1 4.4-1 形貌分析 1 4.4-2 結構分析 1 4.4-3 性質分析 1 II. 改變加熱溫度的影響 1 4.6 細長之奈米柱結構 1 4.6-1 形貌分析 1 4.6-2 結構分析 1 4.6-3 性質分析 1 第五章 結論 1 第六章 參考文獻 1 圖目錄 Figure 2-1氧化鋅結構示意圖,a,c分別為晶格常數,uc是Zn原子與O原子間的面間距 ……………………………………•………………4 Figure 2-2氧化鋅能階與激子能階之示意圖…………………………6 Figure 2-3熱蒸鍍法加熱設備示意圖…………………………………8 Figure 2-4高解析TEM影像發現鋅的團簇…………………………9 Figure 2-5 VLS機制圖示…………………………………………9 Figure 2-6奈米彈簧與奈米環……….….…..……………………….…11 Figure 2-7(a)氧化鋅結構 (b) c軸與其他極性面 (c)彈簧狀奈米帶 (d) RNA模型結構 ………………………………………………………11 Figure 2-8(a) tetrapod-like ZnO SEM image (b) 由TEM分析其核心的雙晶結晶方向 (c) 四面體位在wurtzite結構中的示意圖……………12 Figure 2-9 (a)~(b) 奈米圖釘外貌[18] (c)~(d) 奈米螺旋之SEM影像與結構示意圖……………………………………………………………14 Figure 2-10 (a)~(d) 奈米螺旋槳之SEM影像…………………………16 Figure 2-11奈米螺旋槳成長結構示意圖……………………………16 Figure 2-12奈米碟SEM影像……………………………………18 Figure 2-13 Figure 2-13 (a)奈米碟之CL光譜 (b)~(c) 陰極發光影像與發光強度分析,WGM-enhanced emission約增強了25%發光強度………………………………………………………………………18 Figure 2-14 Figure 2-14 (a)~(d) 奈米城堡的SEM影像 (e) 晶面成長方向示意圖……………………………………………………………20 Figure 2-15 Al-Zn合金相圖………………………………………23 Figure 3-1本實驗合成氧化鋅之設備照片以及示意圖………………29 Figure 3-2元素的蒸氣壓-溫度曲線圖………………………………30 Figure 3-3升溫曲線圖…………………………………………………31 Figure 3-4場發射掃描式電子顯微鏡JSM-7000F……………………32 Figure 3-5 HRTEM (JEM-3000F)………………………………………33 Figure 3-6 Shimadzu LabX XRD-6000 ………………………………33 Figure 4-1 (a)、(b) 奈米螺絲狀之氧化鋅結構 (c) 截面圖之SEM影像……………………………………………………………………36 Figure 4-2(a) 奈米螺絲末端平面之HRTEM影像與EDS元素分析,圖中小圖則為SAD選區電子繞射圖……………………………………38 Figure 4-2(b) 奈米螺絲底部之HRTEM影像與EDS元素分析……38 Figure 4-3奈米螺絲狀結構之XRD …………………………………39 Figure 4-4奈米螺旋之拉曼光譜……………………………………42 Figure 4-5奈米螺旋之陰極激發光光譜………………………………42 Figure 4-6(a) 奈米螺絲成長機制示意圖……………………………44 Figure 4-6(b) 試片表面未撒佈鋁粉所成長的氧化鋅之SEM影像…44 Figure 4-7(a)~(b) SEM影像圖 (c) cross section影像圖…46 Figure 4-8(a)~(b) 低倍率TEM分析影像與SAD影像……48 Figure 4-8(e) EDS分析結果……………………………………………48 Figure 4-9奈米花狀與柵欄狀氧化鋅之拉曼光譜……………………50 Figure 4-10奈米花狀與柵欄狀氧化鋅之陰極激發光光譜…………50 Figure 4-11成長機制示意圖…………………………………………52 Figure 4-12奈米片狀氧化鋅之SEM影像……………………………54 Figure 4-13奈米片狀氧化鋅之TEM影像……………………………56 Figure 4-14奈米片狀氧化鋅之XRD分析……………………………56 Figure 4-15奈米片狀氧化鋅之拉曼光譜……………………………58 Figure 4-16奈米片狀氧化鋅之陰極激發光光譜…………………58 Figure 4-17不同摻雜方式之氧化鋅結構O 1s的core level XPS spectrum,a為奈米片結構、b為奈米螺旋結構、c為花狀與柵欄狀結構、d為提高加熱溫度成長c條件之氧化鋅…………………61 Figure 4-18奈米片狀結構Al 2p3/2之core level光譜……61 Figure 4-19奈米螺旋狀結構Al 2p3/2之core level光譜……62 Figure 4-20花狀與柵欄狀氧化鋅結構Al 2p3/2之core level光譜………………………………………………………………………62 Figure 4-21 (a)~(d) 細長之氧化鋅奈米線……………………………64 Figure 4-22 細長氧化鋅奈米線之TEM影像(a)為奈米線末端 (b)為奈米線根部與其選區繞射圖…………………………………………65 Figure 4-23細長氧化鋅奈米線之拉曼光譜………………………67 Figure 4-24 細長奈米柱陰極激發光譜………………………………67 表目錄 Table 2-1氧化鋅的物理性質…………………………………………5 Table 3-1實驗步驟流程………………………………………………34

    [1] Z. Fan, J.G. Lu , “Zinc Oxide Nanostructures: Synthesis and Properties”, J. Nanosci. Nanotechnol. 5, 1561-1573 (2005)
    [2] B. Meyer and Dominik Marx, “Density-functional study of the structure and stability of ZnO surfaces”, Phys. Rev. B 67, 035403 (2003)
    [3] W. S. Hu, Z. G. Liu, R. X. Wu, Y. F. Chen, W. Ji, T. Yu, and D. Feng, “Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al2O3 and its ultrahigh frequency resonance”, Appl. Phys. Lett.71,548 (1997)
    [4]施敏,張俊彥, “半導體元件物理與製作技術”, 高立圖書有限公司, 2001 三版
    [5] W. I. Park, Y. H. Jun, S. W. Jung, Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett. 82, 964 (2003)
    [6]曾永寬, “氧化鋅奈米線的合成與特性探討”, 國立清華大學材料科學與工程學系博士論文(2003)
    [7] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J.Appl.Phys.79, 7983 (1996)
    [8] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties ”, Adv. Mater. 12, 323 (2002).
    [9] I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires”, Phys. Rev. B. 69, 245401 (2004)
    [10] Z. L.Wang, X.Y. Kong, J.M. Zuo, “Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces”, Phys. Rev. Lett. 91,502 (2003)
    [11]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “1D nanostructures synthesis characterization and application”, Adv. Mater. 2003,I5 ,No.5
    [12]Z.L. Wang, “Self-assembly nanoarchitectures of polar nanobelts nanowires”, J. Mater. Chem. , 15, 1021–1024 | 1021 (2005)
    [13] P. X. Gao, W. Mai, and Z. L. Wang, “Superelasticity and Nanofracture Mechanics of ZnO Nanohelices”, Nano. Lett. Vol 6, No.11, 2536-2543 (2006)
    [14]M. Kitano, T. Hamabe, S. Maeda, “Growth of large tetrapod-like ZnO crystals II. Morphological considerations on growth mechanism”, J. Cryst. Growth. 108, 277—284 (1991)
    [15] Y. Dai, Y. Zhang, Z. L. Wang, “The octa-twin tetraleg ZnO nanostructures”, Solid State Commun. 126 ,629–633 (2003)
    [16] Q. Wan, T. H. Wang, J.C.Zhao, “Enhanced photocatalytic activity of ZnO nanotetrapods”, Appl. Phys. Lett. 87,083105 (2005)
    [17] Q. Wan, K. Yu, T. H. Wang, C. L. Lin, “Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation”, Appl. Phys. Lett. Vol. 83, No. 11, 15 September (2003)
    [18] J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO Nanobridges and Nanonails”, Nano. Lett. Vol.3, No.2, 235-238 (2003)
    [19] L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, and W. Z. Song, Q. Fu, “Self-assembly of aligned ZnO nanoscrews: Growth, configuration, and field emission”, Appl. Phys. Lett. 86, 083106 (2005)
    [20] P. X. Gao, Z. L. Wang, “Nanopropeller arrays of zinc oxide”, Appl. Phys. Lett. 84, 15, 2883 (2004)
    [21] C. Kim, Y. J. Kim, E. S. Jang, G. C. Yi, H. H. Kim, “Whispering-gallery-modelike-enhanced emission from ZnO nanodisk”, Appl. Phys. Lett. 88, 093104 (2006)
    [22] Z. R. Dai, Z. W. Pan, Z. L. Wang, “Novel nanostructure of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater., I3, No.1, January (2003)
    [23] F. Li, Y. Ding, P. Gao, X. Xin, Z. L. Wang, “Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism”, Angew. Chem. Int. Ed., 43, 5238 –5242 (2004)
    [24] X. Wang, J. Song, Z. L. Wang, “Single-crystal nanocastles of ZnO”, Chem. Phys. Lett. 424, 86–90 (2006)
    [25] S. Bethke, H. Pan, B. W. Wessels, “Luminescence of Heteroepitaxial Zinc Oxide”, Appl. Phys. Lett. 52,138 (1998)
    [26] 楊明輝, 金屬氧化物透明導電材料的基本原理, 工業材料, 2001年11月
    [27] C. L.Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I. C. Chen, “Well-Aligned, Vertically Al-Doped ZnO Nanowires Synthesized on ZnO:Ga/Glass Templates”, Journal of The Electrochemical Society, 152 (5) G378-G381 (2005)
    [28] R.C. Wang, C. P. Liu, J. L. Huang, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Appl. Phys. Lett. 88, 023111 (2006)
    [29] 王瑞琪, “新穎氧化鋅奈米材料的成長與光電性質”, 國立成功大學材料科學及工程研究所博士論文(2006)
    [30] Khan A. Alim, Vladimir A. Fonoberov, M. Shamsa, Alexander A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals”, J. Appl. Phys. 97, 124313 (2005)
    [31] H.C. Hsu, C. S. Cheng, C. C. Chang, S. Yang, C. S. Chang, W. F. Hsieh, “Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates”, Nanotechnology 16 297–301 (2005)
    [32] B. Li, D. Yu, S. L.Zhang, “Raman spectral study of silicon nanowires”, Phys. Rev. B Vol. 59, No. 3 , 15 Jan ,1999-I
    [33] G. W. Cong, W. Q. Peng, H. Y. Wei, X. L. Liu, J. J. Wu, X. X. Han, Q. S. Zhu, Z..G. Wang, Z. Z. Ye, J. G. Lu, L. P. Zhu, H. J. Qian, R. Su, C. H. Hong, J. Zhong, K. Ibrahim, T. D. Hu,“Aluminium doping induced enhancement of p–d coupling in ZnO”, J. Phys.: Condens. Matter 18, 3081–3087 (2006)
    [34] Y. M. Chung , C. S. Moon, W. S. Jung, J. G. Han, “The low temperature synthesis of Al doped ZnO films on glass and polymer using pulsed co-magnetron sputtering: H2 effect”, Thin Solid Films 515, 567 – 570 (2006)
    [35] http://www.veeco.com/library/elements/images/VaporPress1B_large jpg
    [36] D.T.Hawkins and A. Hultgren, Diagrams of Binary Alloys Systems: Metals Handbook, American Society for Metals (ASM)/ASM handbook Committee, pp.265 (1973)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE