研究生: |
劉正祥 Cheng-Hsiang Liu |
---|---|
論文名稱: |
生物體操控之微致動器設計 Novel Design of Micro-Actuators for the Manipulation of Biological Objects |
指導教授: |
劉承賢
Cheng-Hsien Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 仿生 、雷諾數 、靜電致動器 |
外文關鍵詞: | Biomimic, Reynolds Number, Electrostatic Actuator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在微生物學、生物科技、及臨床醫學的應用上,必需要能夠達到辨別並操控單一細胞的能力。微機電系統領域提供了一個令人滿意的微生物分子工作平台,而近年來的成果更加速了有關微分子如蛋白質或細胞之間交互作用的研究。近二十年學術界提出許多分子操控的技巧,大部分都利用了直接接觸式的箝制機制以達到操控的目的。最近,藉由場效應差異的操控方法也開始備受矚目。
在這篇論文中,我們利用模仿龍蝦嗅覺行為所設計之仿生微致動器陣列以在水溶液環境中表現微分子操控的能力。此一從工程角度上實現的捕捉裝置是利用微製程技術中的表面微加工技術來達成。這些如龍蝦觸鬚般之微致動器是利用靜電力來驅動,其操作原理是藉由控制週遭流體的雷諾數(流體慣性力與黏滯力之比)來達到分子操控的目的。論文中提及的數值模擬和模態分析將幫助我們調整設計參數。另外,微仿生致動器也包含多樣性的功能,像是粒子操控、分類、捕捉等。初步結果並顯現出仿生微制動器於水溶液中操控微小分子的可行性與功能性,並希望在不久的將來能夠將此一裝置從工程領域擴展至生物醫學領域,以期增進全人類福祉。
Many applications in microbiology, biotechnology and clinical medicine require that individual cells can be identified as well as manipulated. Recent advances on the MEMS (Micro-Electro-Mechanical Systems) research are helping to offer satisfactory micro-bio-object platforms to further investigate the interactions between micro-objects like beads, proteins and cells. Numerous manipulating techniques have been proposed over the past two decades. Most of these techniques take advantage of the clamping mechanism to achieve the grabbing function via direct contact. Moreover, the manipulating techniques via field variations have also been proposed and further studied lately.
Inspired by lobsters’ sniffing behavior, an array of biomimic actuators are proposed in this thesis for micro-particle manipulation in liquid environment. The engineering implementation of this lobster-tiny-hair-like capturing device is achieved by surface micromachining technique. These synthetic tiny-hair-like actuators are actuated via electrostatic force, and drive the micro-objects via disturbing the fluid field. The behind principle is to manipulate the Reynolds number of the surrounding fluid to achieve the function of micro-object manipulation. Numerical simulations and modal analysis are carried out to obtain the design criteria. Diverse designing ideas are employed into our biomimic actuator for not only particles manipulation, but also sorting and trapping. Preliminary experimental results demonstrate the feasibility and functionality of our lobster-sniffing inspired actuator via the micro-object manipulation in liquid environment.
[1] T. Strick, J. F. Allemand, V. Croquette, D. Bensimon, “The Manipulation of Single Biomolecules,” Physics Today, 54(10), 46-60, Oct. (2001)
[2] C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim, “Polysilicon Microgripper,” Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, 48-51, Jun. (1990)
[3] C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim, “Silicon-Processed Overhanging Microgripper,” J. MEMS, 1(3), 31-6, Mar. (1992)
[4] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, M. A. Northrup, “A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation,” Tech. Dig., Transducers'95, 368-71, Jun. (1995)
[5] F. Arai, D. Andou, T. Fukuda, “Adhesion Forces Reduction for Micro Manipulation Based on Micro Physics,” Proc. IEEE MEMS Workshop, 354-9, Feb. (1996)
[6] M. W. Berns, “Laser Scissors and Tweezers,” Sci. Am., Apr. (1998)
[7] A. Ashkin, J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science, 235, 1517-20, Mar. (1987)
[8] K. O. Greulich, “Micromanipulation by light in Biology and Medicine,” Birkhauser Verlag, Basel, 39-87 (1999)
[9] Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of Sperm by a Laser Generated Optical Trap,” Fertility and Sterility, 52(5), 870-3, Nov. (1989)
[10] S. Chu, “Laser Manipulation of Atoms and Particles,” Science, 253, 861-6, Aug. (1991)
[11] J. Ok, M. Chu, C. J. Kim, “Pneumatically Driven Microcage For Micro-Objects in Biological Liquid,” IEEE MEMS Workshop, 459-63, Feb. (1999)
[12] R. Pethig, Crit. Rev. Biotechnol., 16, 331-48
[13] R. Hagedorn, G. Fuhr, T. Muller, Th. Schnelle, U. Schnakenberg, B. Wagner, J. Electrostat., 33, 159-85
[14] R. Pethig, Y. Huang, X-B Wang, J. P. H. Burt, J. Phys. D: Appl. Phys., 25, 881-8 (1992)
[15] K. L. Chan, N. G. Green, M. P. Hughes, H. Morgan, “Cellular Characterization and Separations: Dielectrophoretically Activated Cell Sorting (DACS),” Proc. IEEE Conf. Eng. Medi. and Biol., 6, 2953-6 (1998)
[16]
http://www.bbc.co.uk/history/historic_figures/paxton_joseph.shtml
[17] http://www.nasm.si.edu/wrightbrothers/
[18] W. Barthlott, C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces.” Planta, 202, 1-8 (1997)
[19] http://www.lotusan.de/lotusan/_01_home/index.jsp
[20] F. Vollrath, D. P. Knight, “Liquid Crystalline Spinning of Spider Silk,” Nature, 410, 541-8, Mar. (2001)
[21] A. H. Simmons, C. A. Michal, L. W. Jelinski, “Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk,” Science, 271(5245), 84-7, Jan. (1996)
[22] M. A. R. Koehl, J. R. Koseff, J. P. Crimaldi, M. G. McCay, T. Cooper, M. B. Wiley, P. A. Moore, “Lobster Sniffing: Antennule Design and Hydrodynamic Filtering of Information in an Odor Plume,” Science, 294(5548), 1948-51, Nov. (2001)
[23] Cheer, A. Y. L, M. A. R. Koehl, “Fluid flow through filtering appendages of insects,” J. appl. Math., 4, 185-99 (1987)
[24] Cheer, A. Y. L, M. A. R. Koehl, “Paddles and rakes: fluid flow through bristled appendages of small organisms,” J. theor. Biol., 129, 17-39 (1987)
[25] S. Timoshenko, “Analysis of bimetal thermostats,” J. of the Optical Society of America, 11, 233-55 (1925)
[26] S. Timoshenko, Strength of Materials, Krieger, New York, 1976.
[27] R. J. Roark, W. C. Young, Formulas for Stress and Strain, McGraw-Hill, New York, 1975.
[28] M. W. Judy, Y. H. Cho, R. T. Howe, A. P. Pisano, “Self-Adjusting Microstructures,” Proc. of the IEEE MEMS, 51-6 (1991)
[29] Young's Moduli values of aluminum and chromium are used from the database of ConventorWare, design tools from Coventor, Inc.
[30] F. M. White, Fluid Mechanics, 4th Edition, McGraw-Hill, 1999.
[31] S. Vogel, Life in Moving Fluids: the Physics Biology of Flow, Willard Grant Press, Boston, 1981.
[32] M. A. Rosa, D. D. Bruyker, A. R. Volkel, E. Peeters, J. Dunec, “A novel external electrode configuration for the electrostatic actuation of MEMS based devices,” J. Micromech. Microeng., 14, 446–51, Jan. (2004)
[33] C. F. Chiang, C. H. Liu, C. Chang, C. H. Liu, “A Lobster-Sniffing Inspired Actuator for Manipulation of Micro-objects via Controlling Local Fluid,” Tech. Dig., Transducers'05, 348-51, Jun. (2005)