簡易檢索 / 詳目顯示

研究生: 張智淵
Chang, Chih-Yuan
論文名稱: 二硒化鎢摻雜之形成能與電子結構特性探討
Theoretical investigations of the formation Energy and electronic properties of substitutional dopants in WSe2
指導教授: 邱博文
Chiu, Po-Wen
周美吟
Chou, Mei-Yin
口試委員: 褚志彪
Chuu, Chih-Piao
吳玉書
Wu, Yu-Shu
學位類別: 碩士
Master
系所名稱: 半導體研究學院 - 半導體研究學院
College of Semiconductor Research
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 57
中文關鍵詞: 二硒化鎢摻雜形成能能帶結構
外文關鍵詞: WSe2, substitutional dopants, formation energy, electronic structure
相關次數: 點閱:63下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過渡金屬二硫族化物(TMD)因其出色的電子特性以及二維的傳輸特性在,是低維半導體元件的熱門候選,經實驗證明,單層過渡金屬二硫族化物電子遷移率可達到200 $cm^2/V\cdot s$。然而,由於嚴重的費米能級釘扎和接觸金屬工程的困難,使的這類材料的元件接觸電阻很高。一種解決方案是在接觸區域進行摻雜。因此了解摻雜的影響變得非常重要。

    在這項工作中,我們採用第一性原理計算來研究選定的 n 型和 p 型替位摻雜原子在單層二硒化鎢(WSe$_2$) 中的弛豫結構、形成能和電子特性。首先,我們檢查每種摻雜原子的造成的二硒化鎢結構弛豫情況,以獲得結構變化的清晰圖像。其次,我們計算每種摻雜原子的形成能,以獲得摻雜原子在材料成長中是否適當。第三,我們重點研究 Hf、V、Nb、Ta 和 P 摻雜原子,了解它們對電子結構的影響。此外,我們研究了自旋軌道耦合、摻雜原子引起的應變和不同摻雜濃度對電子結構的影響。參雜二硒化鎢是持續研究中的項目,這項工作可以為二硒化鎢摻雜原子的選擇提供一些方向。


    Transition metal dichalcogenides (TMDs) are known for their application in semiconductor devices due to their excellent electronic properties and low-dimens-\\
    \noindent
    ional transport. It has been shown that the mobility can reach 200 $cm^2/V\cdot s$. However, the contact resistance of TMDs' devices are high due to severe Fermi level pinning and the difficulties of contact engineering. One solution is doping in the contact region. Therefore, understanding the influence of doping becomes important.

    In this work, we adopt first-principles calculations to investigate the structural, formation energy, and electronic properties of selected n-type and p-type substitutional dopants in monolayer WSe$_2$. First, we examine the relaxation of each dopant to obtain a clear picture of the structural changes. Second, we calculate the formation energy of each dopant. Third, we focus on Hf, V, Nb, Ta, and P dopants to understand their influence on the electronic structure. Furthermore, we study the effects of spin-orbit coupling, strain caused by dopants, and doping concentration on the electronic structure.

    Doping in WSe$_2$ is on-going research, and we believe this work can provide valuable guidance for WSe$_2$ dopant selection.

    摘要i Abstract ii 1 Introduction 1 1.1 Transition metal dichalcogenides (TMD) and applications . . . . 1 1.2 Overview on substitutional doping in WSe2 . . . . . . . . . . . 2 2 Theoretical background . . . . . . . . . . . . . . . . . . . . . .5 2.1 First-principles calculations . . . . . . . . . . . . . . . . 5 2.2 TMD crystal configuration and electronic structure . . . . . . 6 3 Structure relaxation and formation energy of substitutional doping in WSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 3.1 Dopant selection . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Computation methodology of formation energy .. . . . . . . . . 12 3.3 Structure relaxation . . . . . . . . . . . . . . . . . . .. . 13 3.3.1 Group B dopants . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 Group A dopants . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 Summary of structure relaxation . .. . . . . . . . . . . . . 19 3.4 Charge density difference . . . . . . . . . . . . . . . . . . . 19 3.5 Formation energy . . . . . . . . . . . . . . . . . . . . . . 19 3.6 Formation energy summary . . . . . . . . . . . . . . . . . . . 27 4 Effects of intrinsic defects and substitutional dopants on the electronic structure of WSe2 . . . . . . . . . . . . . . . . . . 29 4.1 Unfolded band structure . . . . . . . . . . . . . . . . . . . 29 4.2 Electronic structure of intrinsic defect . . . . . . . . . . . 32 4.3 Electronic structure of substitutional dopants . . . . . . . . 33 4.3.1 Band structure and density of states . . . . . . . . . . . 33 4.3.2 Effect of spin-orbit coupling . . . . . . . . . . . . . . . 38 4.3.3 Effect of stain induced by dopant . . .. . . . . . . . . . . 39 4.3.4 Different dopant concentrations . . . . . . . . . . . . . . 40 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A Crystal structure for chemical potential calculation . . . . . . 47 A.1 Bulk property . . . . . . . . . . . . . . . . . . . . . . . . 47 A.2 Secondary phase . . . . . . . . . . . . . . . . . . . . . . . 48 A.3 Formation energy calcualtion . . . . . . . . . . . . . . . . 48 A.3.1 Calculation of the formation energy of NbW (substitutional doping) in monolayer WSe2 . . . . . . . . . . . . . . . . . . . . 49 A.3.2 Calculation of the formation energy of VSe (intrinsic defect) in monolayer WSe2. . . . . . . . . . . . . . . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    [1] S. Grimme, “Semiempirical gga-type density functional constructed with a long-range
    dispersion correction,” Journal of Computational Chemistry, vol. 27, no. 15, pp. 1787–
    1799.
    [2] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio
    parametrization of density functional dispersion correction (DFT-D) for the 94 elements
    H-Pu,” The Journal of Chemical Physics, vol. 132, p. 154104, 04 2010.
    [3] J. c. v. Klimeš, D. R. Bowler, and A. Michaelides, “Van der waals density functionals
    applied to solids,” Phys. Rev. B, vol. 83, p. 195131, May 2011.
    [4] I. Hamada, “van der waals density functional made accurate,” Phys. Rev. B, vol. 89,
    p. 121103, Mar 2014.
    [5] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán,
    and S. Alvarez, “Covalent radii revisited,” Dalton Trans., pp. 2832–2838, May
    2008.
    [6] L. B. Mabelet, B. R. Malonda-Boungou, H. B. Mabiala-Poaty, A. T. Raji, and B. M’Passi-
    Mabiala, “Energetics, electronic and magnetic properties of monolayer WSe2 doped with
    pnictogens, halogens and transition-metal (4d, 5d) atoms: An ab-initio study,” Physica E,
    vol. 124, p. 114161, Oct. 2020.
    [7] N. Onofrio, D. Guzman, and A. Strachan, “Novel doping alternatives for single-layer transition
    metal dichalcogenides,” J. Appl. Phys., vol. 122, Nov. 2017.
    [8] D. Han, W. Ming, H. Xu, S. Chen, D. Sun, and M.-H. Du, “Chemical trend of transitionmetal
    doping in wse2,” Phys. Rev. Appl., vol. 12, p. 034038, Sep 2019.
    [9] Y. J. Zheng, Y. Chen, Y. L. Huang, P. K. Gogoi, M.-Y. Li, L.-J. Li, P. E. Trevisanutto,
    Q. Wang, S. J. Pennycook, A. T. S. Wee, and S. Y. Quek, “Point defects and localized
    excitons in 2d wse2,” ACS Nano, vol. 13, no. 5, pp. 6050–6059, 2019. PMID: 31074961.
    [10] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2
    transistors,” Nat. Nanotechnol., vol. 6, pp. 147–150, Mar. 2011.
    [11] S. Wang, X. Liu, and P. Zhou, “The Road for 2D Semiconductors in the Silicon Age,”
    Adv. Mater., vol. 34, p. 2106886, Dec. 2022.
    [12] W. Li, X. Gong, Z. Yu, L. Ma, W. Sun, S. Gao, Ç. Köroğlu, W. Wang, L. Liu, T. Li, H. Ning,
    D. Fan, Y. Xu, X. Tu, T. Xu, L. Sun, W. Wang, J. Lu, Z. Ni, J. Li, X. Duan, P. Wang, Y. Nie,
    H. Qiu, Y. Shi, E. Pop, J. Wang, and X. Wang, “Approaching the quantum limit in twodimensional
    semiconductor contacts,” Nature, vol. 613, pp. 274–279, Jan. 2023.
    [13] H.-g. Kim and H. J. Choi, “Thickness dependence of work function, ionization energy, and
    electron affinity of Mo and W dichalcogenides from DFT and GW calculations,” Phys.
    Rev. B, vol. 103, p. 085404, Feb. 2021.
    [14] F. Padovani and R. Stratton, “Field and thermionic-field emission in schottky barriers,”
    Solid-State Electronics, vol. 9, no. 7, pp. 695–707, 1966.
    [15] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-
    Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts,” Nano Lett.,
    vol. 12, pp. 3788–3792, July 2012.
    [16] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, “Degenerate
    n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium,” Nano Lett.,
    vol. 13, pp. 1991–1995, May 2013.
    [17] M. Yamamoto, S. Nakaharai, K. Ueno, and K. Tsukagoshi, “Self-Limiting Oxides on
    WSe2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts,” Nano Lett.,
    vol. 16, pp. 2720–2727, Apr. 2016.
    [18] Y. Murai, S. Zhang, T. Hotta, Z. Liu, T. Endo, H. Shimizu, Y. Miyata, T. Irisawa, Y. Gao,
    M. Maruyama, S. Okada, H. Mogi, T. Sato, S. Yoshida, H. Shigekawa, T. Taniguchi,
    K. Watanabe, R. Canton-Vitoria, and R. Kitaura, “Versatile post-doping toward twodimensional
    semiconductors,” ACS Nano, vol. 15, no. 12, pp. 19225–19232, 2021. PMID:
    34843228.
    [19] B. Wang, Y. Xia, J. Zhang, H.-P. Komsa, M. Xie, Y. Peng, and C. Jin, “Niobium doping
    induced mirror twin boundaries in MBE grown WSe2 monolayers,” Nano Res., vol. 13,
    pp. 1889–1896, July 2020.
    [20] “Controllable p-Type Doping of 2D WSe 2 via Vanadium Substitution,” June 2024. [Online;
    accessed 17. Jun. 2024].
    [21] N. Kumari, M. Kalyan, S. Ghosh, A. R. Maity, and R. Mukherjee, “Possible negative
    correlation between electrical and thermal conductivity in p-doped WSe2 single crystal,”
    Mater. Res. Express, vol. 8, p. 045902, Apr. 2021.
    [22] W. T. Kang, I. M. Lee, S. J. Yun, Y. I. Song, K. Kim, D.-H. Kim, Y. S. Shin, K. Lee, J. Heo,
    Y.-M. Kim, Y. H. Lee, and W. J. Yu, “Direct growth of doping controlled monolayer WSe2
    by selenium-phosphorus substitution,” Nanoscale, vol. 10, pp. 11397–11402, June 2018.
    [23] R. Mukherjee, H. J. Chuang, M. R. Koehler, N. Combs, A. Patchen, Z. X. Zhou, and
    D. Mandrus, “Substitutional Electron and Hole Doping of WSe2: Synthesis, Electrical
    Characterization, and Observation of Band-to-Band Tunneling,” Phys. Rev. Appl., vol. 7,
    p. 034011, Mar. 2017.
    [24] Y. Fu, M. Long, A. Gao, Y. Wang, C. Pan, X. Liu, J. Zeng, K. Xu, L. Zhang, E. Liu,
    W. Hu, X. Wang, and F. Miao, “Intrinsic p-type W-based transition metal dichalcogenide
    by substitutional Ta-doping,” Appl. Phys. Lett., vol. 111, July 2017.
    [25] D.-Y. Lin, J.-J. Jheng, T.-S. Ko, H.-P. Hsu, and C.-F. Lin, “Doping with Nb enhances the
    photoresponsivity of WSe2 thin sheets,” AIP Adv., vol. 8, May 2018.
    [26] E. Pavoni, E. Mohebbi, G. M. Zampa, P. Stipa, L. Pierantoni, E. Laudadio, and D. Mencarelli,
    “First principles study of WSe 2 and the effect of V doping on the optical and
    electronic properties,” Mater. Adv., vol. 5, no. 6, pp. 2230–2237, 2024.
    [27] S. K. Pandey, H. Alsalman, J. G. Azadani, N. Izquierdo, T. Low, and S. A. Campbell,
    “Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown
    by chemical vapor deposition,” Nanoscale, vol. 10, pp. 21374–21385, Nov. 2018.
    [28] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals
    and semiconductors using a plane-wave basis set,” Computational Materials Science,
    vol. 6, no. 1, pp. 15–50, 1996.
    [29] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations
    using a plane-wave basis set,” Phys. Rev. B, vol. 54, pp. 11169–11186, Oct 1996.
    [30] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, pp. 17953–
    17979, Dec 1994.
    [31] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmentedwave
    method,” Phys. Rev. B, vol. 59, pp. 1758–1775, Jan 1999.
    [32] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas
    correlation energy,” Phys. Rev. B, vol. 45, pp. 13244–13249, Jun 1992.
    [33] H. H. Huang, X. Fan, D. J. Singh, and W. T. Zheng, “Recent progress of tmd nanomaterials:
    phase transitions and applications,” Nanoscale, vol. 12, pp. 1247–1268, 2020.
    [34] J. P. Perdew, M. Ernzerhof, and K. Burke, “Rationale for mixing exact exchange with
    density functional approximations,” J. Chem. Phys., vol. 105, pp. 9982–9985, Dec. 1996.
    [35] W. J. Schutte, J. L. De Boer, and F. Jellinek, “Crystal structures of tungsten disulfide and
    diselenide,” J. Solid State Chem., vol. 70, pp. 207–209, Oct. 1987.
    [36] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting
    in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B,
    vol. 84, p. 153402, Oct. 2011.
    [37] T. N. Tran, M. T. Dang, Q. H. Tran, T. T. Luong, and V. A. Dinh, “Band valley modification
    under strain in monolayer WSe2,” AIP Advances, vol. 12, p. 115023, 11 2022.
    [38] V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng, “Vaspkit: A user-friendly interface
    facilitating high-throughput computing and analysis using vasp code,” Computer Physics
    Communications, vol. 267, p. 108033, 2021.
    [39] V. Popescu and A. Zunger, “Extracting e versus ⃗k effective band structure from supercell
    calculations on alloys and impurities,” Phys. Rev. B, vol. 85, p. 085201, Feb 2012.

    QR CODE