簡易檢索 / 詳目顯示

研究生: 陳麗真
Li-Chen Chen
論文名稱: 矽半導體微量污染之分析研究 : 原物料光阻之金屬雜質、黃光區環境之氨來源與產品焊墊之污染
Determination of trace contamination in Si semiconductor : metal impurities in photoresist raw material、environmental ammonia sources in photolithography cleanrooms,and organic contaminants in pad
指導教授: 凌永健
Dr. Yong-Chien Ling
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 153
中文關鍵詞: 矽半導體微污染光阻金屬雜質空氣分子污染焊墊
外文關鍵詞: Si semiconductor, Trace contamination, metal impurities in photoresist, AMC, pad
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體產品種類繁多,其中有以金屬氧化物半導體記憶元件(MOS memory devices)被廣泛應用於生活用品中,如液晶電視和全球衛星定位接收器等。在經濟利益考量前提,MOS半導體產品的線寬持續從微米縮減至深次微米尺吋,相關產品製程技術的成功,除須考慮金屬雜質與微顆粒污染外,空降分子污染物(Airborne Molecular Contaminants, AMCs)亦被認為是一種致命的污染。例如︰酸氣和揮發性有機化合物除會引起腐蝕和埋孔、塞孔效應外,也會增加機台保養維修次數。研究顯示半導體製程用的化學品,雖是高純度的原物料,但易因操作不當或儲存條件不良,遭受金屬雜質的污染。相關化學分析,如︰酸鹼滴定儀分析酸鹼化學品濃度、感應耦合電漿質譜儀分析化學品或純水中金屬雜質、離子層析儀分析製程環境中氨含量、和氣相層析質譜儀分析製程環境中揮發性有機化合物含量等,已成為矽半導體廠管控各種污染源必備的技術。
    本論文研發半導體製程用的化學分析方法,包括:(1)光阻原物料的品質鑑定︰新消化方法結合高純度合成石英杯的容器、適當的溶劑揮發溫度、和溫度可達1000℃的紅外線快速加熱器,不須添加任何化學品,可去除複雜的基質干擾,降低背景金屬雜質 (Na, Mg , Al, Fe和Ca : 未偵測到 ~ 0.098 µg/ml),達到改善偵測極限之目的(Mn, Cu, Al 和 Fe : 0.002 ~ 0.073 µg/ml)。(2)黃光區製程環境的監控︰使用高純度去離子水作為採樣介質、石英材質衝擊瓶、快速的採樣和適當的濃縮方法,降低背景氨值(< 0.18 µg/ml),降低氨偵測極限至0.09 ppbv。氨含量監控趨勢圖顯示黃光區有許多氨污染源,如: 補充外氣、洩漏化學品、建材、施工和氮氣槍。(3) 焊墊產品故障分析︰利用掃描式電子顯微鏡進行微區元素分析、特殊前處理方法、和氣相層析質譜儀進行化學組成分析,分辨出三種焊墊表面污染,來自不同的污染源(海綿、靜電片和藍色膠帶)。本論文顯示化學分析對矽半導產業,從製程、環境管控、及故障分析,是不可或缺的重要技術。


    Until recently, there are many product classes of semiconductors, such as MOS memory devices, and the widespread applications include LCD TV, global positioning satellite receive et al.
    Based on economic benefit, circuit geometries continue to shrink from micrometer to deep-submicrometer (< 0.13 □m). For the submicrometer and deep-submicrometer technology nodes, in addition to metals and particles, airborne molecular are suspected to be among the critical contaminants. For example, acid gases and volatile organic compounds can cause corrosion and buildup to lead to increase maintenance cycles. Many study show that process chemicals in use today are even quite pure but can easily be contaminated with metals through improper handing or storage techniques. For all of these reasons, chemical analysis technologies, such as assay of acid/base chemicals using titrator, metal impurities of chemicals and DI water using ICP-MS, ammonium level of environment using IC (ion chromatography) and volatile organic using GC-MS, are necessary to control a variety of contaminants.
    The data presented in this paper evidently show the universal application of chemical analysis for semiconductor manufacturing. For example : (1) Incoming quality control : New digestion method using high quality of synthetic quartz beaker、high-purity chemicals、applicable temperature for solvent evaporation and open-vessel high temperature furnace heater which temperature is up to 1000℃ could diminish an experimental blank of Na, Mg , Al, Fe, and Ca from non- detection to 0.098 µg/ml and matrix interference to permit the determination of Mn, Cu, Al, and Fe in photoresists at detection limits within the range from 0.002 to 0.073µg/ml to meet the requirement of next generation. (2) Environmental monitor: The acceptable monitor condition including high purity of sampling material such as D.I. H2O, quartz impinger, high sampling flow rate, and available concentration parameter could diminish an experimental blank of ammonia much less 0.18 ppb to permit the determination of environmental ammonia at detection limit up to 0.09 ppbv. The trend of environmental ammonia monitor could show many contamination sources of ammonia in photolithography cleanroom, such as make-up air、leaking chemical、construction materials、engineering work and N2 purge-gun. (3) Failure analysis : The analysis method including microstructure element analysis (EDS/SEM)、specific preparation method and chemical composition analysis (GC/MS) could distinguish three kinds of discolored pad into three different contamination sources (sponge, black static electricity sheet and blue tape). Therefore, chemical analysis is important to semiconductor industry including manufacturing process, environmental monitoring, and failure analysis.

    第1章 超微量分析的學術性要求 1.1 前言 1 1.2 原物料進料品質管制  2 1.2.1 主成份濃度 (Assay) 2 1.2.2 金屬雜質(Metal impurities) 2 1.2.3 水含量 (H2O content) 4 1.2.4 陰離子雜質 (Anion impurities) 5 1.3 製程品質管制 6 1.3.1 純水(去離子水)系統 7 1.3.2 化學品供應系統 7 1.3.3 生產設備 8 1.4 生產環境監控 11 1.4.1 化學品污染 13 1.4.2 無塵室內的內裝、工具和設備污染 13 1.4.3 外氣污染 13 1.5 異常問題解決 13 1.5.1 新材料、新製程評估 14 1.5.2 製程設備維護 14 1.5.3 未知物判定 14 1.6 結論 15 1.7 參考資料 16 第2章光阻金屬雜質新的分析方法-紅外線高速加熱器 2.1 前言 49 2.2 實驗 50 2.2.1 試劑 51 2.2.2 設備及分析機台 51 2.2.3 分析步驟 52 2.3 結果與討論 54 2.3.1 方法偵測極限 54 2.3.2 空白樣品分析(容器之選擇) 54 2.3.3 空白樣品分析 (回收溶劑之選擇) 55 2.3.4 光阻溶劑揮發的設定 55 2.3.5 紅外線高速加熱器溫度設定 55 2.3.6 添加樣品分析(基質干擾測試) 56 2.3.7 重覆樣品分析(同一天的精密度) 56 2.3.8 重複樣品分析(不同天的精密度) 56 2.3.9 準確度 57 2.3.10 應用 57 2.4 結論 58 2.5 參考資料 59 第3章半導體廠黃光區NH3濃度監控 3.1 前言 69 3.2 實驗 71 3.2.1 試劑 71 3.2.2 採樣設備及分析儀器 71 3.2.3 分析步驟 71 3.3 結果與討論 73 3.3.1 方法偵測極限 73 3.3.2 破出實驗 73 3.3.3 石英材質impinger穩定性 73 3.3.4 空白樣品分析 74 3.3.5 空氣樣品採樣分析法(Impinger-IC)精密度 74 3.3.6 Impinger-IC方法的應用(探討半導體黃光區微 量氨污染源) 74 3.3.7 氮氣槍的氨含量分析結果 76 3.4 結論 77 3.5 參考資料 78 第4章 半導體產品焊墊(pad)表面污染探討 4.1 前言 102 4.2 範例一(封裝廠反應導線接合不良) 104 4.2.1 實驗 104 4.2.2 結果與討論 104 4.3 範例二 (客戶反應產品pad外觀不良) 106 4.3.1 實驗 106 4.3.2 結果與討論 107 4.4 範例三 (pad外觀不良(出貨檢驗)) 108 4.4.1 實驗 109 4.4.2 結果與討論 109 4.5 結論 112 4.6 參考資料 113

    第 1 章 參考資料
    [1] Semiconductor Industry Blue Book, World Semiconductor Trade Statistics,1998.
    [2] A. Prange, Spectrochimica Acta, Vol. 44B, NO. 5, 1989, 437.
    [3] G. Settebre and E. Debrah, MICRO 16, no. 6, 1998, 79.
    [4] G. M. Wallraff and W. D. Hinsberg, Chem. Rev.,Vol. 99, 1999, 1801.
    [5] C. M. Berger and C. L. Henderson, Polymer, Vol. 44, 2003, 2101.
    [6] K. Nakazawa, E. Shiobara, M. Asano, Y. Sato, S. Tanaka and Y. Oonishi, Jpn. J.Appl. Phys., Vol. 38, 1999, 1569.
    [7] A. Siriraks, CA. Pohl and M. Toofan, J. of Chromatography, Vol 602, 1992, 89.
    [8] R. T. Talasek, Semiconductor Fabtech-8th Edition, 1998, 131.
    [9] ITRS 2003 Edition, Yield Enhancement, Table 114a, “ Technology Requirements for Wafer Environmental Contamination Control-Near term.”
    [10] J. Aigueperse, P. Mollard, D. Devilliers, M. Chemla, R. Faron, R. Romano and J.P. Cuer, Fluorine Compounds, Inorganic in Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed., VCH, vol. A 11, 1988, 307.
    [11] K. Sugimoto, Progress in KrF Resist Development, JSR Technical Presentation, May 13, 1998.
    [12] K. Eberhardt, Semiconductor Febtech, Issue NO. 6, 1997, 225.
    [13] SEMI Standard F21-95, Semiconductor Equipment and Materials International,Mountain View, CA, 1995, 1996.
    [14] S. Peng, A. Martin and B. Terrie, MICRO: Extreme Silicon-Sun,March 2000.

    第 2 章 參考資料
    [1] K. Graff, Metal Impurities in Silicon-Device Fabrication, Springer, Berlin, 1995, ch. 1 and 4.
    [2] S. J. Liu and J. F. Lee, Int. J. Technol. Lett., 12 (2000) 1126.
    [3] F.-H. Ko, M.-Y. Wang and T.-K. Wang, Anal. Chem., 71 (1999) 5413.
    [4] 楊金成, 柯富祥, 王美雅, 王天戈, 奈米通訊 第六卷第四期 18. 金屬雜質於DUV光阻中擴散及吸附行為之研究.
    [5] P. B. Sahoo, R. Vyas, M. Wadhwa, and S. Verma, Bull. Mater. Sci., 25 (2002) 553.
    [6] 趙天生, 柯富祥, 陳志強, 張廖貴術, 奈米通訊 第六卷第三期 19.薄閘極氧化層之金屬雜質影響與可靠性探討
    [7] T. Ohmi, J. Electrochem. Soc., 139 (1992) 3317.
    [8] P.-H. Chi, F.-H. Ko, C.-T. Hsu, H.-L. Chen, C.-K Yang, Y.-C. Sun, and M.-H. Yang, J. Ana. At. Spectrom., 17 (2002) 358.
    [9] Y-C Sun and C-J Ko, J. Ana. At. Spectrom., 21 (2006) 311.
    [10] H.-A. Chang, B.-J. Cheng, Y.-C. Lin, U.S. Patent 6 346 418 B1, 2002.
    [11] C-C Wan, S-J Jiang, M-T You and A-C Sahayam, J. Ana. At. Spectrom., 20 (2005) 1290.
    [12] Y-C Sun and C-J Ko, Microchem. J., 78 (2004) 163.

    第 3 章 參考資料
    [1] P. B. Sahoo, R. Vyas, M. Wadhwa, and S. Verma, Bull. Mater. Sci., 25 (2002) 553.
    [2] D. A. Kinkead, A. Grayfer, O. Kishkovich, Pro. SPIE, 4344 (2001) 739.
    [3] D. Ruede, M. Ercken and T. Borgers, Solid State Technol., 44 (2001) 63.
    [4] A. Grayfer, O. Kishkovich and D. Ruede, Pro. SPIE, 4346 (2001) 676.
    [5] E. V. Johnstone, L. Dieu, C. Chovino, J. Reyes, D. Hong, P. Krishnan, D. Coburn, and C. Capella, SPIE, 2 5256-48 (2003) 1.
    [6] G. Gallagher, and M. Wright, MICRO 17 (1999) 81.
    [7] I. B. Peterson, A. D. Klaum, and E. Hou, MICRO: Behind the mask-Peterson, September 2000.
    [8] C. Howard, MICRO: Behind the mask, September 2003.
    [9] A. Dallas, K. Graham, M. Clarysse, and V. Fonderie, Pro. SPIE, 4689 (2002) 1085.
    [10] D. A. Kinkead, W. Goodwin, and K. Turnquest, MICRO: Process Equipment Control - Kinkead, October 2000.
    [11] O. P. Kishkovich, MICRO 17 (1999) 61.
    [12] P. Sun, M. Adams, and T. Bridges, MICRO 18 (2000) 59.
    [13] B. Demandate, K. Murray, S. Texas, M. Alexander,
    Semiconductor International: Article, September 2000.
    [14] R. K. Schneider, Cleanrooms, (March 1999) 28.
    [15] J. Mikulsky, Semiconductor International, (September 1996) 115.
    [16] A. J. Muller, L. A. Psota-kelty, H. W. Krautter, J. D. Sinclair, Solid State Technol. (September 1994) 61.

    第 4 章 參考資料
    [1] Y.-F. Hung, C.-B. Chang, J. Chinese Institute of Industrial Engineers, 19 (2002) 67.
    [2] S. P. Cunningham, C. J. Spanos, and K. Voros, IEEE Trans. Semiconduct. Manufact., 8 (1995) 103.
    [3] M.–D. Ker, J.-J. Peng, IEEE Trans. Comp., Packag. Technol.,25 (2002) 309.
    [4] H.-S. Chang, K.-C. Hsieh, T. Martens and A. Yang, IEEE Trans. Comp., Packag. Technol.,27 (2004) 155.
    [5] M. Petzold, L. Berthold, D. Katzer, H. Knoll, D. Memhard, P. Meier, and K.-D. Lang, Microelectron. Rel., 40 (2000) 1515.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE