研究生: |
李依文 Lee, Yi Wen |
---|---|
論文名稱: |
應用於質子交換膜燃料電池陰極端之奈米碳管支撐鉑鎳二元觸媒對於氧氣還原之效能研究 Efficiency of Carbon-Nanotube-Supported Pt-Ni Binary Catalysts on Oxygen Reduction Reaction at the Cathode of a Proton Exchange Membrane Fuel Cell |
指導教授: |
葉宗洸
Yeh, Tsung Kuang |
口試委員: |
薛康琳
Hsueh, Kan Lin 陳燦耀 Chen, Tsan Yao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 鉑 、鎳 、二元觸媒 、氧氣還原反應 、質子交換膜燃料電池 |
外文關鍵詞: | Platinum, Nickel, Binary Catalyst, ORR, PEMFC |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究於奈米碳管上製備PtNi二元觸媒並應用於質子交換膜燃料電池中之陰極。奈米碳管是藉由化學氣相沉積法直接成長於碳布上以增加電極表面積,經由親水處理後,先以脈衝式電鍍法於奈米碳管上沉積金屬鎳顆粒,而後將試片浸於攝氏80度含有氯鉑酸及乙二醇之溶液中沉積鉑奈米顆粒;純鉑之單元觸媒亦會製備做為對照組。
測試方面,經由循環伏安法於0.1 M過氯酸溶液中進行電化學測試,並利用X光粉末繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)以及電感耦合等離子體質譜(ICP-MS)對試片做進一步的分析。經由TEM觀測發現觸媒形貌為5 nm之Pt顆粒包覆在50 nm之Ni顆粒上。透過電化學結果顯示,PtNi二元觸媒較Pt單元觸媒活性高,並反應在CV及LSV之測試曲線中,包含CV氫氧吸脫附區域及LSV測得的反應起始電位及電流密度大小,都顯示Ni的存在確實優化觸媒之催化效果。
半電池立體化成全電池時三相介面為重要考量,於自製陰極電極噴塗0.8 mg/cm2 Nafion與商用觸媒作組裝再經由氫氣單電池測試,此效率表現最佳,功率密度可達611 mW/cm2,比商用觸媒之329 mW/cm2高出許多,顯示出透過本研究手法製備之PtNi電極其催化效果優良。
In this study, Pt-Ni binary alloy catalysts supported on carbon nanotubes (PtNi/CNTs) were developed for enhancing the oxygen reduction reaction (ORR) efficiency for proton exchange membrane fuel cell (PEMFC) application. The CNTs were directly grown on carbon cloths by chemical vapor deposition method and then treated with hydrophilic process. The nickel nanoparticles were deposited on CNTs by pulse electro-planting, and then the platinum particles were reduced on them in a chloroplatinic acid solution containing platinum precursor and ethylene glycol at 80 ℃ for different hours. The sample with Pt/CNTs was also prepared for comparison. Electrochemical characteristics of the PtNi/CNTs catalyst were investigated via cyclic voltammetry analysis and rotating disk electrode test in 0.1 M perchloric acid. Structure and elementary composition were measured by SEM, EDX and ICP-MS. In ORR test, it was found that the limiting current density and onset potential of PtNi/CNTs specimen were better than those of Pt/CNTs specimen. The outcome signified better PtNi binary catalysts in adsorption and desorption behavior of oxygen to increase the ORR rate.
[1] W. R. Grove, "On voltaic series and the combination of gases by platinum", Phil. Mag., vol. 14, pp. 127-130, 1839
[2] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd ed. Chichester, West Sussex: J. Wiley, 2003.
[3] B. Wickman, "Nanostructured Model Electrodes for Studies of Fuel Cell Reactions", Chalmers University of Technology, 2010
[4] M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, and A. Ohta, "Influences of Both Carbon Supports and Heat-Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol," Journal of the Electrochemical Society, vol. 142, pp. 2572-2576, Aug 1995.
[5] W. Z. Li, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, et al., "Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell," Carbon, vol. 40, pp. 791-794, 2002.
[6] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, "Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers," Electrochimica Acta, vol. 40, pp. 355-363, Feb 1995.
[7] T. R. Ralph and M. P. Hogarth, "Catalysis for Low Temperature Fuel Cells," Platinum Metals Review, vol. 46, pp. 117-135, Jul 2002.
[8] M. Naraghi, Carbon Nanotubes - Growth and Applications, InTech, 2011
[9] S. Thomas, M. Zalbowitz, and D. Gill, Fuel Cells: Green Power, USA, 2006
[10] 彭文權, 「以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒」, 元智工學院化學工程學系碩士論文, 1997.
[11] 胡啟章, 「電化學原理與方法」, 五南圖書出版公司, 2002.
[12] H. S. Wroblowa, Y. C. Pan, and G. Razumney, "Electroreduction of Oxygen - New Mechanistic Criterion," Journal of Electroanalytical Chemistry, vol. 69, pp. 195-201, 1976.
[13] A. H. C.H. Hamann, W. Vielstich, "Electrochemistry, ed. 1st.," Wiley-VCH, Weinheim, 1998.
[14] A. S. M.R. Tarasevich, and E. Yeager, "Comprehensive Treatise of Electrochemistry," Springer US, 1983.
[15] E. Yeager, "Dioxygen Electrocatalysis - Mechanisms in Relation to Catalyst Structure," Journal of Molecular Catalysis, vol. 38, pp. 5-25, Nov 1986.
[16] 林冠男, 「密度泛涵理論在Pt15, Pt11Fe4和Pt11Co4團簇上對氧氣還原之研究」, 台灣科技大學化學工程所碩士論文, 2006.
[17] Damjanov.A and V. Brusic, "Electrode Kinetics of Oxygen Reduction on Oxide-Free Platinum Electrodes," Electrochimica Acta, vol. 12, pp. 615-&, 1967.
[18] E. Yeager, Razaq, M., Gervasio, D., Razaq, A. & Tryk, D, "Proc. Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry," The Electrochemical Society, vol. 92–11, p. 440, 1993.
[19] K. V. Ramesh, P. R. Sarode, S. Vasudevan, and A. K. Shukla, "Preparation and Characterization of Carbon-Based Fuel-Cell Electrodes with Platinum-Group Bimetallic Catalysts," Journal of Electroanalytical Chemistry, vol. 223, pp. 91-106, May 25 1987.
[20] G. Couturier, D. W. Kirk, P. J. Hyde, and S. Srinivasan, "Electrocatalysis of the Hydrogen Oxidation and of the Oxygen Reduction Reactions on Pt and Some Alloys in Alkaline-Medium," Electrochimica Acta, vol. 32, pp. 995-1005, Jul 1987.
[21] 呂崇銘, 「白金-合金/Nafion觸媒電極之製備與其氣固氣-固相氧氣還原反應之動力探討」, 東海大學化學工程系碩士論文, 1992.
[22] S. Mukerjee, S. Srinivasan, M. P. Soriaga, and J. Mcbreen, "Role of Structural and Electronic-Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction - an in-Situ Xanes and Exafs Investigation," Journal of the Electrochemical Society, vol. 142, pp. 1409-1422, May 1995.
[23] T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, "Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co," Journal of the Electrochemical Society, vol. 146, pp. 3750-3756, Oct 1999.
[24] S. Mukerjee and S. Srinivasan, "Enhanced Electrocatalysis of Oxygen Reduction on Platinum Alloys in Proton-Exchange Membrane Fuel-Cells," Journal of Electroanalytical Chemistry, vol. 357, pp. 201-224, Oct 15 1993.
[25] P. J. Kulesza, K. Miecznikowski, B. Baranowska, M. Skunik, S. Fiechter, P. Bogdanoff, et al., "Tungsten oxide as active matrix for dispersed carbon-supported RuSex nanoparticles: Enhancement of the electrocatalytic oxygen reduction," Electrochemistry Communications, vol. 8, pp. 904-908, May 2006.
[26] M. R. Tarasevich, A. E. Chalykh, V. A. Bogdanovskaya, L. N. Kuznetsova, N. A. Kapustina, B. N. Efremov, et al., "Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72," Electrochimica Acta, vol. 51, pp. 4455-4462, Jun 1 2006.
[27] E. V. S. A.S. Samardak, A.V. Ognev, L.A. Chebotkevich,R. Mahmoodi, S.M. Peighambari, M.G. Hosseini , F. Nasirpouri, "High-density nickel nanowire arrays for data storage applications " Journal of Physics: Conference Series, vol. 345, p. 012011, 2012.
[28] L. Tamasauskaite-Tamasiunaite, A. Balciunaite, A. Vaiciukeviciene, A. Selskis, and E. Norkus, "Investigation of electrocatalytic activity of titania nanotube supported nanostructured Pt-Ni catalyst towards methanol oxidation," Journal of Power Sources, vol. 225, pp. 20-26, Mar 1 2013.
[29] B. J. Hwang, L. S. Sarma, C. H. Chen, C. Bock, F. J. Lai, S. H. Chang, et al., "Controlled Synthesis and Characterization of Ru-core-Pt-shell Bimetallic Nanoparticles," Journal of Physical Chemistry C, vol. 112, pp. 19922-19929, Dec 18 2008.
[30] H. I. Lee, C. H. Lee, T. Y. Oh, S. G. Choi, I. W. Park, and K. K. Baek, "Development of 1 kW class polymer electrolyte membrane fuel cell power generation system," Journal of Power Sources, vol. 107, pp. 110-119, Apr 20 2002.