簡易檢索 / 詳目顯示

研究生: 黃鈺如
Huang, Yu-Ju
論文名稱: 用於5G通訊之新型傳輸線與氮化鎵功率放大器設計
Design of Novel Transmission Lines and GaN Power Amplifiers for 5G Applications
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員: 劉怡君
金俊德
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 132
中文關鍵詞: 功率放大器傳輸線氮化鎵製程
外文關鍵詞: Power Amplifiers, Transmission Lines, GaN HEMT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著第五代行動通訊的發展,高速處理器和記憶體的需求也隨之提高,因此有了大量的高頻測試需求,為了加速晶圓測試端的效率,並降低由測試端所造成的產量損失(yield loss),故探針卡(Probe Card)的發展是降低測試時間和成本的重要關鍵。依晶圓設計及應用頻率範圍的不同,也有相對應的探針卡種類,本論文因應高速高頻的需求,使用薄膜式探針卡(Membrane Probe Card)來設計,探討薄膜上傳輸路徑的不同架構及分析方式,在毫米波應用時,有低訊號損失的特性。
    本論文後半段,主要探討使用氮化鎵製程所設計之射頻功率放大器。氮化鎵材料具有寬能隙和高的飽和電子遷移率及良好的耐溫特性,適合當作高頻、高溫以及高功率輸出的功率放大器的首選材料。射頻功率放大器的研究動機及基本介紹也會在第三章來做說明,第四章及第五章會討論功率放大器設計的流程及細節,第一個功率放大器利用穩懋0.25-m氮化鎵製程設計在sub-6GHz之兩級功率放大器,其量測結果達到33.8 dBm的輸出飽和功率及20.4 dB的功率增益。第二個設計為穩懋0.15-m氮化鎵製程操作在28 GHz的兩級平衡式功率放大器,輸入和輸出埠採用兩組相位差為90度的等功率分配器,利用分配器兩個分量做相加相減,達到耦合或隔離的效果。此設計之放大器在操作頻率為28 GHz時,達到效率24.3 %以及13.6 dB的功率增益和32.1 dBm的飽和功率。


    With the development of the fifth generation wireless systems, the demands for high-speed processors and memory have been increased accordingly. Following the demand for high-speed applications, the high-frequency testing technologies become more and more important. To increase the efficiency of wafer testing and to reduce the yield loss from testing, probe cards play a significant role. Depending on the wafer design and frequency, there are corresponding types of probe cards. In the first part of this thesis, in compliance with the high-speed and high-frequency requirements, different structures of the transmission lines are studied and analyzied to achieve high performance and low loss for mm-wave probe card on wafer testing applications.
    The design of RF power amplifiers by using Gallium-Nitride (GaN) High Electron Mobility Transistors (HEMTs) process is in the second part of the thesis. GaN HEMT presents the property of wide band-gap, high electron saturation velocity, and high thermal conductivity. Therefore, GaN material is suitable for power amplifiers applications under the operation of high frequency and high output power. The motivation and basic introduction of RF power amplifiers are presented in chapter 3. Chapter 4 and chapter 5 present the design flow and methods in details of power amplifiers. The first design is a two-stage power amplifier operating at sub-6 GHz using 0.25-m GaN HEMT process. The measured results show the saturation output power is about 33.8 dBm with the power gain of 20.4 dB. The second circuit presents a 28-GHz two-stage balanced power amplifier using 0.15-m GaN HEMT process. The input and output ports use two 3-dB couplers with 90o phase difference. The signal can be coupled or isolated by the quadrature hybrid. The designed PA reaches a power gain exceeding 13.6 dB and a saturation power of 32.1 dBm with PAE more than 24.3 % at 28 GHz.

    摘要…………………………………………………………………………………………………….....i Abstract…………………….…………………………………………………………………….……....ii 目錄……………………………………………………………………………………………………..iii 表目錄………………………………………………………………………………………………...…ix 圖目錄……………………………………………………………………………………………………x 第1章 緒論 17 1.1 研究背景跟動機 17 1.2 論文架構 18 第2章 傳輸線 19 2.1 傳輸線原理及等效電路 19 2.2 傳輸線特徵阻抗分析方式 22 2.2.1 時域反射儀 22 2.2.2 ANASYS Q2D 24 2.2.3 RLGC萃取 25 2.3 平面傳輸線種類 26 2.3.1 微帶線 (Micro-strip Line) 27 2.3.2 帶狀線 (Strip Line) 28 2.3.3 共平面波導 (Coplanar Waveguide) 30 2.3.4 新型架構之傳輸線 32 2.4 薄膜探針卡之新型傳輸線設計 34 2.4.1 環境模擬架構及變數 34 A. 探針卡 34 B. 變數設計 36 C. 阻抗與參數查表設計 40 D. 傳輸線設計組合 44 2.4.2 薄膜式傳輸線模擬及結果 46 A. 模擬及量測平台 46 B. 量測及模擬結果 48 C. 分析及總結 60 2.4.3 利用IPD製程之傳輸線 71 A. IPD製程特性 71 B. 傳輸線架構及參數 71 C. 量測及模擬結果分析 73 2.5 本章總結 78 第3章 射頻功率放大器原理及特性 80 3.1 簡介 80 3.2 功率放大器基本介紹 81 3.2.1 功率放大器性能參數 81 A. 功率與增益 81 B. 效率 82 C. 穩定度參數 83 D. 1-dB增益壓縮 86 E. 三階互調失真 87 3.2.2 負載線理論 89 3.3 3-DB COUPLER 91 3.3.1 Branch-line coupler 92 3.3.2 Lange coupler 94 3.3.3 Rat-race coupler 97 3.4 氮化鎵製程 101 3.5 本章總結 103 第4章 氮化鎵sub-6GHz之兩級功率放大器 104 4.1 電路介紹 104 4.2 氮化鎵SUB-6GHZ之兩級功率放大器 105 4.2.1 電路架構 105 4.2.2 電晶體與偏壓選擇 106 4.2.3 穩定度與阻抗匹配 107 A. 穩定度 107 B. 輸出匹配 108 C. 級間匹配與輸入匹配 109 4.3 電路模擬與量測 109 4.3.1 電路佈局圖 109 4.3.2 小訊號模擬與量測結果 110 4.3.3 大訊號模擬與量測結果 111 4.4 本章總結 114 第5章 氮化鎵28 GHz兩級平衡式功率放大器 116 5.1 電路介紹 116 5.2 氮化鎵28 GHZ兩級平衡式功率放大器 117 5.2.1 電路架構 119 5.2.2 電晶體與偏壓選擇 120 5.2.3 穩定電路設計 121 5.2.4 3-dB耦合器設計 122 5.3 電路模擬結果 126 5.4 本章總結 128 第6章 結論與未來展望 129 參考文獻 130

    [1] T. U. Kingdom, “5G spectrum Public Policy Position,” Huawei Technol. Co, pp. 6–7, 2017.
    [2] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. 1989.
    [3] Inder Bahl, Lumped Elements for RF and Microwave Circuits. 2003.
    [4] O.Weeden, “Probe Card Tutorial,” Probe Card Tutor., pp. 1–40, 2000.
    [5] M. J. Liu and S. H. Hsu, “A Miniature 300-MHz Resonant DC-DC Converter with GaN and CMOS Integrated in IPD Technology,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9656–9668, 2018.
    [6] Á. Rosa, S. Verstuyft, A. Brimont, D.VanThourhout, andP.Sanchis, “Microwave index engineering for slow-wave coplanar waveguides,” Sci. Rep., vol. 8, no. 1, pp. 1–8, 2018.
    [7] X. L. Tang et al., “Performance improvement versus CPW and loss distribution analysis of slow-wave CPW in 65 nm HR-SOI CMOS technology,” IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1279–1285, 2012.
    [8] D. Kaddour et al., “High-Q slow-wave coplanar transmission lines on 0.35 m CMOS process,” IEEE Microw. Wirel. Components Lett., vol. 19, no. 9, pp. 542–544, 2009.
    [9] J. J. Lee and C. S. Park, “A slow-wave microstrip line with a high-Q and a high dielectric constant for millimeter-wave CMOS application,” IEEE Microw. Wirel. Components Lett., vol. 20, no. 7, pp. 381–383, 2010.
    [10] Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-Tem Analysis of ‘Slow-Wave’ Mode Propagation on Coplanar Microstructure Mis Transmission Lines,” IEEE Trans. Microw. Theory Tech., vol. 35, no. 6, pp. 545–551, 1987.
    [11] F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of low-loss transmission lines in scaled CMOS by accurate electromagnetic simulations,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2605–2615, 2009.
    [12] A. L. Franc, E. Pistono, and P. Ferrari, “Design guidelines for high performance slow-wave transmission lines with optimized floating shield dimensions,” Eur. Microw. Week 2010, EuMW2010 Connect. World, Conf. Proc. - Eur. Microw. Conf. EuMC 2010, vol. 3, no. September, pp. 1190–1193, 2010.
    [13] T. S. D. Cheung, “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1183–1200, 2006.
    [14] S. Seki and H. Hasegawa, “Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates,” Electron. Lett., vol. 17, no. 25, pp. 940–941, 1981.
    [15] H. Y. Cho, T. J. Yeh, S. Liu, and C. Y. Wu, “High-performance slow-wave transmission lines with optimized slot-type floating shields,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1705–1711, 2009.
    [16] B. Razavi, RF Microelectronics, vol. 53, no. 9. 2013.
    [17] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Second Edition. 2006.
    [18] B. S. Virdee, Broadband microwave amplifiers. 2004.
    [19] Y. Takayama, “A New Load-Pull Characterization Method for Microwave Power Transistors,” MTT-S Int. Microw. Symp. Dig., vol. 76, pp. 218–220, 1976.
    [20] D. M. Pozar, Microwave Engineering. John Wiley & Sons, Inc., 2012.
    [21] H. Wang, “Power Amplifier Performance Survey 2000-Present,” 2018 48th Eur. Microw. Conf. EuMC 2018, 2018.
    [22] F. M. Abou El-Ela, “Monte Carlo simulation of electron transport in AlGaAS,” AIP Conf. Proc., vol. 748, no. January 1993, pp. 86–92, 2005.
    [23] Y. Fan, Z. Yang, H. Lin, Y. Yuan, and Z. Chen, “Ku-band pre-matched broadband GaN power amplifier with over 30 W power,” Electron. Lett., vol. 52, no. 10, pp. 872–874, 2016.
    [24] V. Dupuy et al., “A compact wideband high power amplifier in GaN technology with 47% peak PAE,” 2014 IEEE Int. Wirel. Symp. IWS 2014, pp. 4–7, 2014.
    [25] O. Silva, I. Angelov, and H. Zirath, “4 W highly linear and reliable GaN power amplifier for C-band applications,” Asia-Pacific Microw. Conf. Proceedings, APMC, vol. 3, pp. 1–3, 2015.
    [26] N. Deltimple et al., “A compact fully integrated GaN high power amplifier for C-X band applications,” 2014 Int. Radar Conf. Radar 2014, pp. 4–7, 2014.
    [27] A. Alizadeh, M. Frounchi, and A. Medi, “On Design of Wideband Compact-Size Ka/Q-Band High-Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 6, pp. 1831–1842, 2016.
    [28] M. A. Reece, S. Contee, and C. W. Waiyaki, “K-band GaN power amplifier design with a harmonic suppression power combiner,” Proc. 2017 IEEE Top. Conf. Power Amplifiers Wirel. Radio Appl. PAWR 2017, pp. 92–95, 2017.
    [29] P. Neininger, L. John, P. Bruckner, C. Friesicke, R. Quay, and T. Zwick, “Design, Analysis and Evaluation of a Broadband High-Power Amplifier for Ka-Band Frequencies,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2019-June, pp. 564–567, 2019.
    [30] M. VanHeijningen et al., “Ka-Band AlGaN / GaN HEMT High Power and Driver,” Symp. A Q. J. Mod. Foreign Lit., pp. 237–240, 2005.
    [31] H. Huebschman and H. Alfred Hung, “AlGaN/GaN Ka-Band 5-W MMIC Amplifier,” IEEE Trans. Microw. Theory Tech., pp. 4456–4463, 2006.
    [32] K. S. Boutros, W. B. Luo, Y. Ma, G. Nagy, and J. Hacker, “5W GaN MMIC for millimeter-wave applications,” Tech. Dig. - IEEE Compd. Semicond. Integr. Circuit Symp. CSIC, pp. 93–95, 2006.
    [33] C. F. Campbell, M. Y. Kao, and S. Nayak, “High efficiency Ka-band power amplifier MMICs fabricated with a 0.15μm GaN on SiC HEMT process,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3, 2012

    無法下載圖示 全文公開日期 2025/02/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE