研究生: |
林奕廷 Lin, Yi-Ting |
---|---|
論文名稱: |
藉助慣性感測單元來輔助之運動健身系統的研究與開發 An IMU-aided Fitness System |
指導教授: |
王俊堯
Wang, Chun-Yao |
口試委員: |
邱文信
Chiu, Wen-Hsin 李昀儒 Lee, Yun-Ju |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 慣性感測單元 、運動健身 |
外文關鍵詞: | IMU, Fitness |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,主要針對四種健身動作進行動作辨識以及動作錯誤判別,包含負重深蹲、橋式運動、棒式運動、及仰臥抬腿。並且,藉由慣性測量單元(Inertial measurement unit)之輔助來開發一款Android APP,使得系統可回報運動動作之正確性、呈現過往運動表現、及上傳運動數據至個人雲端。最後,實驗證明所有辨識項目準確率可達97%以上,以及平均的絕對平均誤差在2°以內。
In this work, we present an IMU-aided fitness system for users conducting exercises. The system utilizes three wearable 9-axis IMU sensors to detect four kinds of exercises including squat, bridge exercise, plank exercise, and double leg raise. The sensors are also connected to a smartphone via Bluetooth, and an Android APP is designed for users. The system can instantaneously report the correctness of exercises, show the statistics of workouts, and record the data in the cloud for references. The experimental results demonstrate that the average recognition rates are greater than 97%, and the average absolute mean error in movement angle and swing angle are less than 2°.
Bibliography
[1] M. S. Ashapkina, A. V. Alpatov, V. A. Sablina and A. A. Chekushin, “Quantitative Parameters Developing for Estimation of Rehabilitation Exercising on The Basis of IMU Sensor Device,” Mediterranean Conference on Embedded Computing, 2018, pp. 541-544.
[2] C. Crema, A. Depari, A. Flammini, E. Sisinni, T. Haslwanter and S. Salzmann, “IMU-based Solution for Automatic Detection and Classification of Exercises in The Fitness Scenario,” IEEE Sensors Applications Symposium, 2017, pp. 1-6.
[3] C. J. Chen, Y. T. Lin, C. C. Lin, Y. C. Chen, Y. J. Lee, and C. Y. Wang, “Rehabilitation System for Limbs using IMUs,” IEEE International Symposium on Quality Electronic Design, 2020.
[4] Y. P. Chang, T. C. Wang, Y. J. Lee, C. C. Lin, Y. C. Chen, and C. Y. Wang, “A Smart Single-Sensor Device for Instantaneously Monitoring Lower Limb Exercises,” IEEE International System-on-Chip Conference, 2019.
[5] P. Hausberger, A. Fernbach and W. Kastner, “IMU-based Smart Fitness Devices for Weight Training,” Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 5182-5189.
[6] D. Morris, T. S. Saponas, A. Guillory, I. Kelner, “RecoFit: Using a Wearable Sensor to Find, Recognize, and Count Repetitive Exercises,” Proceedings of Conference on Human Factors in Computing Systems, 2014, pp. 3225-3234.
[7] F. Wahjudi and F. J. Lin, “IMU-based Walking Workouts Recognition,” IEEE World Forum on Internet of Things, 2019, pp. 251-256.
[8] T. C. Wang, Y. P. Chang, C. J. Chen, Y. J. Lee, C. C. Lin, Y. C. Chen, and C. Y. Wang, “A Smart Knee Pad for Stride Count and Walking Distance Measurement via Knee Angle Calculation,” IEEE International Symposium on Quality Electronic Design, 2020.
[9] Fitbod, https://www.fitbod.me/.
[10] Gyro Gesture Control, http://www.gyro.com.tw/.
[11] Nike Training Club, https://www.nike.com/ntc-app/.
[12] Personal Trainer - Kaia, https://www.kaiahealth.com/.