簡易檢索 / 詳目顯示

研究生: 張皓翔
Chang, Haw Shiang
論文名稱: 利用酵母菌異源養殖系統大量表現及純化水稻磷酸傳輸蛋白
Heterologous Expression and Purification of Oryza sativa SPX-MFS Transporter from Yeast
指導教授: 潘榮隆
Pan, Rong Long
口試委員: 林士鳴
劉姿吟
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 32
中文關鍵詞: 水稻液泡
外文關鍵詞: Oryza sativa, vacuole
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷(P)是每一株植物生長所需的十七大基本化學元素之一,包括為了植物根的形成和種子的發芽之用。磷在細胞成分中佔有很大的比例,包括細胞膜和胞器膜中的磷脂質,以及對於生理反應過程中,有高度調節性的磷酸蛋白。
    植物胞器中,佔有最大體積的胞器是液泡,可以佔據細胞體積的90%。液泡儲存相當多的無機物與有機物,如礦物質、水、有毒化合物或被分解的代謝產物。
    在液泡膜上,有兩種傳輸帶電荷的膜蛋白,其一為陽離子傳輸蛋白,包含鈣離子傳輸蛋白和鈉/鉀離子傳輸蛋白;其二為陰離子傳輸蛋白,主要為SPX-MFS傳輸蛋白家族,負責傳輸磷酸鹽。
    在本研究中,標的蛋白(水稻SPX-MFS1)的分子量是78.7 kDa。經由MEMSAT-SVM分析,它具有十二個跨膜螺旋區。我們用酵母(BJ2168)異源表達系統做大量表現和純化高純度的SPX-MFS1蛋白。我們將依此分析OsSPX-MFS1,並試圖在未來能解出3維立體結構。


    Phosphorus (P) is one of the seventeen essential elements for plant growth, including roots formation and seed germination. It is high importance for cellular components, such as phospholipids for membrane and phosphoproteins for regulation of enzymatic processes in the cell.
    Plant vacuoles are the largest organelles occupying 90% volume of a plant cell. It have multiple functions including storage of small molecules such as minerals, water, toxic compounds and metabolites.
    The charge transporters localized in the vacuolar membranes have two types: cation transporters, such as vacuolar Ca2+ transporters and vacuolar Na+/K+ transporters, and anion transporters, such as SPX-MFS families.
    The molecular mass of Oryza sativa SPX-MFS1, is about 78.7 kDa. From the MEMSAT-SVM analysis, Oryza sativa SPX-MFS1 has twelve transmembrane helices. We would focus on overexpression of Oryza sativa SPX-MFS1 in the heterologous expression system using Saccharomyces cerevisiae (BJ2168) as a host and on the isolation of the yeast microsome containing this protein. We have obtained OsSPX-MFS1 and tried to analyze it for future in vitro research, like transport mechanism and 3-dimension structure determination.

    Introduction ………………………………………………….1 Materials and Methods………………………………………6 Results……………………….……….………….…………..11 Discussion…………………………….…………….……..…14 References……………………….………………………..…16 Figures ………………………………………………………21

    1. Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., & Iwata, S. (2003). Structure and mechanism of the lactose permease of Escherichia coli. Science, 301 (5633), 610-615.
    2. Alexandre, J., Lassalles, J. P., & Kado, R. T. (1990). Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1, 4, 5-triphosphate. Nature, 343 (6258), 567-570.
    3. Bassil, E., Coku, A., & Blumwald, E. (2012). Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany, 63(16), 5727-5740.
    4. Berry, J. A., & Downton, W. J. S. (1982). Environmental regulation of photosynthesis. Photosynthesis, 2, 263-343.
    5. Campbell, N. A., Williamson, B., & Heyden, R. J. (Eds.) (2006). Biology: Exploring Life: Boston, Massachusetts: Pearson Prentice Hall. 492 p. ISBN: 0-13-250882-6.
    6. Chiou, T. J., & Lin, S. I. (2011). Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 62, 185-206.
    7. De Angeli, A., Zhang, J., Meyer, S., & Martinoia, E. (2013). AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nature Communications, 4, 1804.
    8. Duan, K., Yi, K., Dang, L., Huang, H., Wu, W., & Wu, P. (2008). Characterization of a sub‐family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. The Plant Journal, 54 (6), 965-975.
    9. Echeverria, E., & Burns, J. K. (1989). Vacuolar acid hydrolysis as a physiological mechanism for sucrose breakdown. Plant Physiology, 90 (2), 530-533.
    10. Foster, D. L., Boublik, M., & Kaback, H. R. (1983). Structure of the lac carrier protein of Escherichia coli. Journal of Biological Chemistry, 258 (1), 31-34.
    11. Giovannini, D., Touhami, J., Charnet, P., Sitbon, M., & Battini, J. L. (2013). Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Reports, 3 (6), 1866-1873.
    12. Hamburger, D., Rezzonico, E., Petétot, J. M. C., Somerville, C., & Poirier, Y. (2002). Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant Cell, 14 (4), 889-902.
    13. Huang, Y., Lemieux, M. J., Song, J., Auer, M., & Wang, D. N. (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science, 301 (5633), 616-620.
    14. Hürlimann, H. C., Pinson, B., Stadler‐Waibel, M., Zeeman, S. C., & Freimoser, F. M. (2009). The SPX domain of the yeast low‐affinity phosphate transporter Pho90 regulates transport activity. EMBO Reports, 10 (9), 1003-1008.
    15. Isayenkov, S., Isner, J. C., & Maathuis, F. J. (2010). Vacuolar ion channels: roles in plant nutrition and signaling. FEBS Letters, 584 (10), 1982-1988.
    16. Jeschke, W. D., Kirkby, E. A., Peuke, A. D., Pate, J. S., & Hartung, W. (1997). Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.). Journal of Experimental Botany, 48 (1), 75-91.
    17. John, H. & William, J. (Eds.) (1999). Better Crops with Plant Food, 83, pp1-4.
    18. Lin, S. I., Santi, C., Jobet, E., Lacut, E., El Kholti, N., Karlowski, W. M., Verdeil, J.L., Breitler, J.C., Périn, C., Ko, S.S., Guiderdoni, E., Chiou, T.J., & Guiderdoni, E. (2010). Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant and Cell Physiology, 51 (12), 2119-2131.
    19. Liu, J., Yang, L., Luan, M., Wang, Y., Zhang, C., Zhang, B., Shi, J., Zhao, F.G., Lan, W., & Luan, S. (2015). A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, 112 (47), E6571-E6578.
    20. Lv, Q., Zhong, Y., Wang, Y., Wang, Z., Zhang, L., Shi, J., Wu, Z., Liu, Y., Mao, C., Yi, K., & Wu, P. (2014). SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. The Plant Cell, 26 (4), 1586-1597.
    21. Maiden, M. C., Davis, E. O., Baldwin, S. A., Moore, D. C., & Henderson, P. J. (1987). Mammalian and bacterial sugar transport proteins are homologous. Nature, 325, 641-643.
    22. Marger, M. D., & Saier, M. H. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences, 18 (1), 13-20.
    23. Marschner, H. (1995). Functions of Mineral Nutrients: Micronutrients. In Marschner, H. (Ed.) Mineral Nutrition of Higher Plants. (2nd ed.), (chap. 9, pp.313-404). Oxford, United Kingdom: Gulf Professional Publishing.
    24. Martinoia, E., Meyer, S., De Angeli, A., & Nagy, R. (2012). Vacuolar transporters in their physiological context. Plant Biology, 63 (1), 183.
    25. Mengel, K., & Kirkby, E.A. (2001). Plant Growth and Crop Production. In Mengel, K., & Kirkby, E.A. (Eds.). Principles of Plant Nutrition (5th ed.), (chap.5 pp.243-335). Berlin, Germany: Kluwer Academic Publishers.
    26. Mimura, T., Sakano, K., & Shimmen, T. (1996). Studies on the distribution, re‐translocation and homeostasis of inorganic phosphate in barley leaves. Plant, Cell & Environment, 19 (3), 311-320.
    27. Pao, S. S., Paulsen, I. T., & Saier, M. H. (1998). Major facilitator superfamily. Microbiology and Molecular Biology Reviews, 62 (1), 1-34.
    28. Papadopoulos, V., Baraldi, M., Guilarte, T. R., Knudsen, T. B., Lacapère, J. J., Lindemann, P., Norenberg, M.D., Nutt, D., Weizman, A., Zhang, M.R., & Gavish, M. (2006). Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends in Pharmacological Sciences, 27 (8), 402-409.
    29. Peng, M., Hannam, C., Gu, H., Bi, Y. M., & Rothstein, S. J. (2007). A mutation in NLA, which encodes a RING‐type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. The Plant Journal, 50 (2), 320-337.
    30. Porath, J. (1992). Immobilized metal ion affinity chromatography. Protein Expression and Purification, 3 (4), 263-281.
    31. Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S. J., Ryan, P. R., Delhaize, E., & Matsumoto, H. (2004). A wheat gene encoding an aluminum‐activated malate transporter. The Plant Journal, 37 (5), 645-653.
    32. Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116 (2), 447-453.
    33. Secco, D., Wang, C., Arpat, B. A., Wang, Z., Poirier, Y., Tyerman, S. D., Wu, P., Shou, H., & Whelan, J. (2012). The emerging importance of the SPX domain‐containing proteins in phosphate homeostasis. New Phytologist, 193 (4), 842-851.
    34. Stefanovic, A., Arpat, A. B., Bligny, R., Gout, E., Vidoudez, C., Bensimon, M., & Poirier, Y. (2011). Over‐expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. The Plant Journal, 66 (4), 689-699.
    35. Tavares, B., Domingos, P., Dias, P. N., Feijó, J. A., & Bicho, A. (2011). The essential role of anionic transport in plant cells: the pollen tube as a case study. Journal of Experimental Botany, 62 (7), 2273-2298.
    36. Wang, C., Huang, W., Ying, Y., Li, S., Secco, D., Tyerman, S., Whelan, J., & Shou, H. (2012). Functional characterization of the rice SPX‐MFS family reveals a key role of OsSPX‐MFS1 in controlling phosphate homeostasis in leaves. New Phytologist, 196 (1), 139-148.
    37. Wild, R., Gerasimaite, R., Jung, J. Y., Truffault, V., Pavlovic, I., Schmidt, A., ... & Mayer, A. (2016). Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science, 352 (6288), 986-990.
    38. Xu, H., Martinoia, E., & Szabo, I. (2015). Organellar channels and transporters. Cell Calcium, 58 (1), 1-10.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE