研究生: |
朱怡璇 Chu, Yi-Hsuan |
---|---|
論文名稱: |
奈米結構錳氧化物之製備與超高電容儲能機制探討 Preparation of nanostructured manganese oxide and the supercapacitive charge storage mechanism |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
張國興
溫惠玲 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 錳氧化物 、超電容 、儲能材料 、石磨烯 、電化學石英微震盪天平 、充放電反應機制 、非對稱超電容 |
外文關鍵詞: | charge storage mechanism |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是針對奈米氧化物的製備以及超高電容機制的探討。論文結果主要分為三部分。第一部份結果探討錳氧化物在不同電為範圍下的充放電反應機制以及有添加劑在電解液中的影響。第二部分則為製備中孔洞奈米顆粒錳氧化物的方式以及其材料特性和電化學分析。第三部分則是研究在有無添加劑的電解液裡對製備出的錳氧化物活化以及多圈掃描後的效應,也探討了其與石墨烯組裝成的非對稱電容的效果。以下將簡要地討論各章所包含的內容。
第一部份藉由電化學石英天平(EQCM)和循環伏安掃描(CV)來偵測錳氧化物在硫酸鈉水溶液中進行電化學充放電反應時的伏安電流變化及重量變異,進而推知在不同電位下的充放電反應機制。由微石英天平震盪的研究中發現,錳氧化物於1.0~1.2V的電位之間因氧氣產生而大量剝離,相當不穩定。此外,由質荷比(MCR)可大略推估電位在-0.2~0.2V的區間主要為H+的嵌入與嵌出,而在電位範圍為0.2~0.8V之間主要進出錳氧化物晶格的應為Na+或H3O+。另外,當電解液中加入少量的NaHCO3或Na2HPO4時,HCO3-可與錳離子形成難溶鹽類,而HPO42-則可吸附於錳氧化物的表面,進而抑制錳氧化物的溶解,增加可利用電位範圍。
第二部分則是利用醋酸錳加入甲醇再經鍛燒的方式,簡單地製備出錳氧化物,並利用熱重分析儀(TGA)、X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、比表面積測試儀(BET)、循環伏安掃描(CV)來檢驗。發現在分散有石墨烯氧化物的甲醇中能夠幫助形成孔徑分布窄,以及較大表面積和孔洞較多的錳氧化物,使其具有較大的比電容表現,以及在高掃速下因具有多孔洞而使得電解液裡的離子能夠快速補充而有較好的電容表現。
第三部分則是探討第二部分中製備出的錳氧化物,在有無碳酸氫鈉的電解液裡的活化及一千圈循環伏安掃描下的結果。發現在活化前即加入陰離子能夠在一千圈後還維持相當大的比電容及可逆的電化學行為,並且由感應耦合質譜儀(ICP)的結果也顯示有加添加劑的實驗中,剝落到電解液裡的錳氧化物濃度比沒加添加劑的低很多。並且活化完成後的錳氧化物也與石墨烯組裝成非對稱電容,其最大電位利用範圍可到達2.5V,且在比電流40A/g,電位範圍為2.4V情況下仍具有18.7Wh/kg的能量密度和約20kW/kg的功率密度。此外,在比電流為10A/g,電位範圍2.4V的情況下進行充放電一千圈後,其電化學行為仍然相當穩定。顯示此方法有效將可利用電位範圍擴大而增加可儲存電能空間。
In this work, we study the preparation of nanostructured manganese oxide and the charge storage mechanism of supercapacitors. The results of this study are separated into three parts. The first part discusses different charge storage mechanisms between different potential regions and the effects of additive in the electrolyte on manganese oxide. The second part suggests a simple way to synthesize mesoporous MnOx and the textural characteristics and electrochemical properties are investigated. In the third part, the effects of additive on the activation and cycle-life test of manganese oxide are examined. Besides, we also assembled MnOx/graphene asymmetric supercapacitor in the electrolyte with or w/o additive.
In the first part, the electrochemical behavior and the corresponding mass variations of amorphous manganese oxide (denoted as a-MnOx) are examined simultaneously in neutral electrolyte containing 10 mM Na2SO4 without or with NaHCO3 or Na2HPO4 by cyclic voltammetry with a quartz crystal microbalance (QCM). From this EQCM study, a-MnOx is unstable between 1.0 and 1.2 V in 10 mM Na2SO4 because of significant dissolution of a-MnOx due to oxygen evolution. From the MCR (mass-to-charge ratio) value, the major ion involves is H+ when the potential window is between -0.2V and 0.2V. But when it is between 0.2V and 0.8V, H3O+ are considered to be the main ions intercalate/deintercalate within the manganese oxide. The dissolution phenomenon and oxygen evolution are successfully suppressed by the formation of insoluble manganese carbonate or the adsorption of phosphate by adding NaHCO3 or Na2HPO4 in the Na2SO4 electrolyte, enlarging the potential window for the charge/dichrage of a-MnOx.
In the second part, the Mn3O4 is synthesized through calcination of the mixture of methanol (or GO/methanol) and manganese acetate. The instrument X-ray diffractometer(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), Thermogravity analysis (TGA), surface area and pore size analyzer (BET), and cyclic voltammetry (CV) are employed to characterized the sample. It is discovered that manganese oxide synthesized with graphene oxide suspended in methanol possesses the properties of narrower pore size distribution, larger surface area and pore volume. Therefore, the higher capacitance is attributed to the larger pore volume which facilitates ion transportation.
In the third part, the effects of bicarbonate on the activation and cycle life of manganese oxide are studied. It is found that higher capacitance value can be gained when activating manganese oxide in the electrolyte with bicarbonate. From the results of ICP-MS, the concentration of manganese in the electrolyte with additive is much fewer than that in bare sodium sulfate. Besides, the assembly of asymmetric supercapacitor MnOx/graphene reaches 2.5V which is the largest maximum cell voltage in aqueous electrolyte to the best of our knowledge. In addition, the energy density reaches 18.66Wh/kg and power density of 20kW/kg at 2.4V cell voltage in 0.1M Na2SO4 with adding 3mM NaHCO3. Furthermore, it exhibits an excellent charge-discharge behavior after 1000 cycles at the cell voltage of 2.4V at current density of 10A/g.
119
References
[1] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundementals and Applications, 2nd Edition, John Wiley & Sons Inc: New York, 2001.
[2] 胡啟章, 電化學原理與方法, 五南圖書, 2002.
[3] D. Pletcher, F.C. Walsh, Industrial Electrochemistry, Chapman and Hall Ltd, 1990.
[4] C.G. Zoski, Handbook of Electrochemitry, Elsevier Science, 2007.
[5] B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic/Plenum (1999).
[6] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38 (2009) 2520-31.
[7] S. Sarangapani, B.V. Tilak, C.-P. Chen, Journal of Electrochemical Society 143 (1996).
[8] D.C. Grahame, Chemal Reviews (Washington, D.C.) 41 (1947) 441.
[9] M.A.V. DeVanathan, B.V. Tilak, Chemal Reviews (Washington, D.C.) 65 (1965) 635.
[10] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta 45 (2000) 2483.
[11] J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-Dimensional Battery Architectures, Chemical Reviews 104 (2004) 4463.
[12] A.D. Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci, Characteristics and performance of 500F asymmetric hybrid advanced supercapacitor ptototypes, Journal of Power Sources 113 (2003) 62.
[13] C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors, Nano Letters 6 (2006) 2690.
[14] K.H. Chang, C.C. Hu, C.Y. Chou, Textural and Capacitive Characteristics of Hydrothermally Derived RuO2‧xH2O Nanocrystallites: Independent Control of Crystal Size
and Water Content, Chemistry of Materials 19 (2007) 2112-2119.
[15] C.C. Hu, T.W. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochemica Communication 4 (2002) 105-109.
120
[16] C.C. Hu, T.Y. Hsu, Effects of complex agents on the anodic deposition and electrochemical characteristics of cobalt oxides, Electrochimica Acta 53 (2008) 2386-2395.
[17] C.-C. Hu, C.-M. Huang, K.-H. Chang, Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors, Journal of Power Sources 185 (2008) 1594-1597.
[18] S.-Y. Wang, N.-L. Wu, Operating Characteristics of Aqueous Magnetite Electrochemical Capacitors, Journal of Applied Electrochemistry 33 (2003) 345-348.
[19] C.-C. Hu, C.-Y. Cheng, Ideally Pseudocapacitive Behavior of Amorphous Hydrous Cobalt-Nickel Oxide Prepared by Anodic Deposition, Electrochemical and Solid-State Letters 5 (2002) A43.
[20] T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process, Advanced Materials 22 (2010) 347-51.
[21] K.-H. Chang, C.-C. Hu, C.-M. Huang, Y.-L. Liu, C.-I. Chang, Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type, Journal of Power Sources 196 (2011) 2387-2392.
[22] M. Toupin, T. Brousse, D. Be’langer, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor, Chemistry of Materials 16 (2004) 3184-3190.
[23] H.Y. Lee, J.B. Goodenough, Supercapacitor Behavior with KCl Electrolyte, Journal of Solid State Chemistry 144 (1999) 220-223.
[24] D. Be’langer, T. Brousse, J.W. Long, Manganese Oxides-Battery Materials Make the Leap to Electrochemical Capacitors, The Electrochemical Society Interface (2008).
[25] H.Y. Lee, S.W. Kim, H.Y. Lee, Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode, Electrochemical and Solid-State Letters 4 (2001) A19.
[26] J.-K. Chang, W.-T. Tsai, Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors, Journal of The Electrochemical Society 150 (2003) A1333.
121
[27] N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors, Electrochimica Acta 51 (2006) 3039-3045.
[28] T. Shinomiya, V. Gupta, N. Miura, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochimica Acta 51 (2006) 4412-4419.
[29] S.-C. Pang, M.A. Anderson, T.W. Chapman, Novel Electrode Materials for Thin-Film Ultracapacitors- Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Oxide, Journal of The Electrochemical Society 147 (2000) 444-450.
[30] J. Broughton, Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochimica Acta 49 (2004) 4439-4446.
[31] Y. Hou, Y. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes, Nano Letters 10 (2010) 2727-33.
[32] V. Subramanian, H. Zhu, B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials, Electrochemistry Communications 8 (2006) 827-832.
[33] E. aymundo-Pi ero, V. Khomenko, E. Frackowiak, F. guin, Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors, Journal of The Electrochemical Society 152 (2005) A229.
[34] Y.-T. Wu, C.-C. Hu, Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO[sub 2] Deposits, Journal of The Electrochemical Society 151 (2004) A2060.
[35] X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, MnO2-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical capacitors, The Journal of Physical Chemistry B 110 (2006) 6015-6019.
[36] S.-F. Chin, S.-C. Pang, M.A. Anderson, Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors, Journal of The Electrochemical Society 149 (2002) A379.
[37] C.-C. Hu, C.-C. Wang, Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition, Journal of The
122
Electrochemical Society 150 (2003) A1079.
[38] M. Chigane, M. Ishikawa, Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism, Journal of The Electrochemical Society 147 (2000) 2246-2251.
[39] S.-L. Kuo, N.-L. Wu, Investigation of Pseudocapacitive Charge-Storage Reaction of MnO[sub 2].nH[sub 2]O Supercapacitors in Aqueous Electrolytes, Journal of The Electrochemical Society 153 (2006) A1317.
[40] L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte, The Journal of Physical Chemistry C 112 (2008) 7270-7277.
[41] W. Wei, X. Cui, W. Chen, D.G. Ivey, Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors, Journal of Power Sources 186 (2009) 543-550.
[42] Y.-C. Hsieh, K.-T. Lee, Y.-P. Lin, N.-L. Wu, S.W. Donne, Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor, Journal of Power Sources 177 (2008) 660-664.
[43] S. Komaba, A. Ogata, T. Tsuchikawa, Enhanced supercapacitive behaviors of birnessite, Electrochemistry Communications 10 (2008) 1435-1437.
[44] C.-C. Hu, C.-Y. Hung, K.-H. Chang, Y.-L. Yang, A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors, Journal of Power Sources 196 (2011) 847-850.
[45] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, Journal of the American Chemical Society 130 (2008) 5856-5857.
[46] Y.-S. Che, C.-C. Hu, Y.-T. Wu, Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: effects of manganese precursors and oxide thickness, Journal of Solid State Electrochemistry 8 (2004) 467-473.
[47] D.R. Lide, Handbook of Chemistry and Physics, CRC Press, 1992.
[48] M. Pourbaix, Atlas of Electrochemical Equilibria in AqueousSolutions, Houston,TX, National Association of Corrosion Engineers, 1966.
[49] D.D. Macdonald, The Thermodynamics and Theoretical Corrosion Behavior of
123
Manganese in Aqueous System at Elevated Temperatures, Corrosion Science 16 (1976) 461-482.
[50] C.-C. Hu, Y.-H. Huang, K.-H. Chang, Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical capacitors, Journal of Power Sources 108 (2002) 117-127.
[51] F. Ataherian, K.-T. Lee, N.-L. Wu, Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials☆, Electrochimica Acta 55 (2010) 7429-7435.
[52] T. Yamashita, A. Vannice, NO Decomposition over Mn2O3 and Mn3O4, Journal of Catalysis 163 (1996) 158-168.
[53] Y.F. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen, E. Widjaja, Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3 and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15, The journal of Phisical Chemistry B 110 (2006) 24450.
[54] G. Laugel, J. Arichi, M. Moliere, A. Kiennemann, F. Garin, B. Louis, Metal oxides nanoparticles on SBA-15: Efficient catalyst for methane combustion, Catalysis Today 138 (2008) 38-42.
[55] L. Chen, T. Horiuchi, T. Mori, Catalytic reduction of NO over a mechanical mixture of NiGa2O4 spinel with manganese oxide:influence of catalyst preparation method, Applied Catalysis A: 209 (2001) 97-105.
[56] M. Baldi, E. Finocchio, F. Milella, G. Busca, Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4, Applied Catalysis B: Enviromental 16 (1998) 43-51.
[57] A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 an electrode for rechargeable lithium batteries, Nature 381 (1996) 499.
[58] L.-X. Yang, Y.-J. Zhu, H. Tong, W.-W. Wang, G.-F. Cheng, Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study, Journal of Solid State Chemistry 179 (2006) 1225-1229.
[59] Y.-F. Lee, K.-H. Chang, C.-C. Hu, Y.-H. Chu, Designing tunable microstructures of Mn3O4 nanoparticles by using surfactant-assisted dispersion, Journal of Power Sources 206 (2012) 469-475.
[60] Y.F. Shen, R.P. Zerger, R.N. DeGuzman, S.L. Suib, L. McCurdy, D.I. Potter, C.L. O'Young, Manganese Oxide Octahedral Molecular Sieves-Preparation,
124
Characterization, and Applications, Science 260 (1993) 511.
[61] M.C. Bernard, A.H. Goff, B.V. Thi, Electrochromic Reactions in Maganese Oxide, Journal of Electrochemical Society 140 (1993).
[62] R. Jothiramalingam, B. Viswanathan, T. Varadarajan, Preparation, characterization and catalytic properties of cerium incorporated porous manganese oxide OMS-2 catalysts, Catalysis Communications 6 (2005) 41-45.
[63] S. Xing, Z. Zhou, Z. Ma, Y. Wu, Facile synthesis and electrochemical properties of Mn3O4 nanoparticles with a large surface area, Materials Letters 65 (2011) 517-519.
[64] Y.C. Zhang, T. Qiao, X. Ya Hu, Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires, Journal of Solid State Chemistry 177 (2004) 4093-4097.
[65] W. Zhang, Z. Yang, Y. Liu, S. Tang, X. Han, M. Chen, Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method, Journal of Crystal Growth 263 (2004) 394-399.
[66] W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, J.T. Park, Size-dependent magnetic properties of colloidal Mn(3)O(4) and MnO nanoparticles, Angewandte Chemie 43 (2004) 1115-7.
[67] I.K. Gopalakrishnan, N. Bagkar, R. Ganguly, S.K. Kulshreshtha, Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation, Journal of Crystal Growth 280 (2005) 436-441.
[68] A. Vazquez-Olmos, R. Redon, G. Rodriguez-Gattorno, M. Esther Mata-Zamora, F. Morales-Leal, A.L. Fernandez-Osorio, J.M. Saniger, One-step synthesis of Mn3O4 nanoparticles: structural and magnetic study, Journal of Colloid and Interface Science 291 (2005) 175-80.
[69] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.
[70] A. Moses Ezhil Raj, S.G. Victoria, V.B. Jothy, C. Ravidhas, J. Wollschlager, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique, Applied Surface Science 256 (2010) 2920-2926.
[71] V.P. Santos, M.F.R. Pereira, J.J.M. Orfao, J.L. Figueiredo, Synthesis and
125
Characterization of Manganese Oxide Catalysts for the Total Oxidation of Ethyl Acetate, Topics in Catalysis 52 (2009) 470-481.
[72] E.A. Muller, L.F. Rull, L.F. Vega, K.E. Gubbins, Adsorption of Water on Activated Carbons: A Molecular Simulation Study, The Journal of Physical and Chemistry 100 (1996) 1189-1196.
[73] T. Ohba, H. Kanoh, K. Kaneko, Affinity Transformation from Hydrophilicity to Hydrophobicity of Water Molecules on the Basis of Adsorption of Water in Graphitic Nanopores, Journal of the American Chemical Society 126 (2004) 1560-1562.
[74] C.-C. Hu, J.-H. Su, T.-C. Wen, Modification of multi-walled carbon nanotubes for electric double-layer capacitors: Tube opening and surface functionalization, Journal of Physics and Chemistry of Solids 68 (2007) 2353-2362.
[75] C. Sangwichien, G.L. Aranovich, M.D. Donohue, Density functional theory predictions of adsorption, Colloids and Surfaces A: Physicochemical and Engineering Aspects 206 (2002) 313-321.
[76] D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angewandte Chemie 47 (2008) 373-6.
[77] D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, C.D. Lokhande, A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies, Journal of Electroanalytical Chemistry 647 (2010) 60-65.
[78] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, Journal of Power Sources 153 (2006) 183-190.
[79] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density, Advanced Functional Materials 21 (2011) 2366-2375.
[80] Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, High-Energy MnO2 Nanowire-Graphene and Graphene Asymmetric Electrochemical Capacitors, American Chemical Society Nano 4 (2010) 5835-5842.
[81] H. Liu, P. He, Z. Li, Y. Liu, J. Li, A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte,
126
Electrochemica Acta 51 (2006) 1925-1931.
[82] Y.G. Wang, Z.D. Wang, Y.Y. Xia, An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes, Electrochemica Acta 50 (2005) 5641-5646.
[83] M.S. Hong, S.H. Lee, S.W. Kim, Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor, Electrochemical and Solid-State Letters 5 (2002) A227.
[84] S. Komaba, T. Tsuchikawa, A. Ogata, N. Yabuuchi, D. Nakagawa, M. Tomita, Nano-structured birnessite prepared by electrochemical activation of manganese(III)-based oxides for aqueous supercapacitors, Electrochimica Acta 59 (2012) 455-463.
[85] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Letters 8 (2008) 2272-2282.
[86] M.D. Stoller, S. Park, Y. Zhu, A. J., R.S. Ruoff, Graphene-Based Ultracapacitors, Nano Letters 8 (2008) 3498-3502.
[87] S.-Y. Yang, K.-H. Chang, H.-W. Tien, Y.-F. Lee, S.-M. Li, Y.-S. Wang, J.-Y. Wang, C.-C.M. Ma, C.-C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors, Journal of Materials Chemistry 21 (2011) 2374.
[88] W. Lv, D.M. Tang, Y.B. He, C.H. You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu, Q.H. Yang, Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage, ACS Nano 3 (2009) 3730-3736.
[89] T. rousse, M. Toupin, . langer, A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte, Journal of The Electrochemical Society 151 (2004) A614.
[90] Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources 194 (2009) 1222-1225.