簡易檢索 / 詳目顯示

研究生: 楊勝傑
Yang, Sheng-Chieh
論文名稱: 電動輔助自行車騎乘中基於生理強度之策略性偏好負荷模式選擇
Physiological Intensity-based Strategical Preferred Load Pattern Selection in Electric Assisted Bicycle Cycling
指導教授: 李昀儒
Lee, Yun-Ju
口試委員: 陳協慶
Chen, Hsieh-Ching
邱敏綺
Chiu, Min-Chi
廖翊宏
Liao, Yi-Hung
黃瀅瑛
Huang, Ying-Yin
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 77
中文關鍵詞: 電動輔助自行車操作行為決策偏好騎乘負荷生理反應
外文關鍵詞: electric assisted bicycle, e-bike, control behaviors, preferred riding load, physiological responses
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技的進步提高了電動輔助自行車的性能,使得騎乘者可以在更多元的地形騎乘,並適用於各種使用場景。然而,在原本的踩踏、轉向、剎車、變速器控制之外,額外的輔助動力控制引發了人力、輔助馬達、變速器和環境因素之間的搭配問題,因此經驗不足的騎士常見上坡時採用重齒比導致輔助動力效果不彰的問題。電動輔助自行車、騎乘者和環境之間的不匹配可能會導致里程焦慮、騎乘缺乏健康益處、或導致負面騎乘體驗。而考慮個人偏好特徵的自動控制策略除了可以減輕電動輔助自行車手動操作的負擔、並減少人-車之間的不佳搭配,對於操作技術有限的騎乘者而言,這樣的控制策略在多變的地形更能突顯其優勢。本研究考量可能會影響變速和輔助動力控制的騎乘者表現和反應特性,嘗試闡明電動輔助自行車控制決策過程中涉及的人為因素。本研究完成四項實驗,從中分別探討騎乘者如何應對模擬和真實的環境阻力以及對騎乘負荷的偏好。第一項實驗探討騎乘者、電動輔助自行車設定和環境阻力之間的相互作用,在室內固定式電動輔助自行車騎乘過程中測量變速器檔位、輔助動力大小和坡度阻力對生理和主觀反應的影響,並提出用於電動輔助控制的目標應使最低騎乘負荷為 0.75 W/kg,而維持中等強度的最高負荷則為 1.26 W/kg (6.1 MET)。第二項實驗探討了室內電動自行車騎乘時,偏好的騎乘負荷在電動輔助自行車控制決策過程中的作用,在騎乘實驗中提供固定坡度阻力來研究首選負載,同時也在固定時間間隔產生坡度阻力變化來誘發電動輔助自行車控制行為。過程中允許根據實驗參與者依需求調整變速器檔位和輔助動力程度,並依據減少的操作次數與趨於穩定的踩踏功率來辨別實驗參與者已獲得偏好的騎乘負荷,結果顯示偏好的騎乘負荷範圍為 0.92 到 1.17 W/kg,該騎乘負荷導致中等強度的生理負荷(5.3至5.6 MET),而該偏好騎乘負荷的範圍與型態則反映了騎乘者-電動輔助自行車-環境間的互動結果。在第三項實驗中,採用了相同的室內設置,並模擬一條真實路線的坡度阻力,在更複雜的阻力變化條件中探討偏好騎乘負荷在電動輔助自行車操作決策時的角色。在模擬環境中可排除交通狀況的影響,同時允許觀察電動自行車的控制行為以及在受控條件下產生的騎乘負荷和生理反應,實驗結果顯示,在不同坡度阻力條件中,實驗參與者透過操作獲得類似的負荷(0.95至1.14 W/kg)。在最後的實驗中,則對室外實際騎乘的數據集進行了整體處理和解釋。實驗結果顯示,在相同騎乘速度下,實驗參與者在各個坡度條件下也採用相同的踩踏功率輸出,並驗證從實際騎乘數據中獲得個人偏好負荷的可行性。本研究結果可用於開發以人為本的自動控制策略或根據個人喜好客製化電動自行車控制的自適應方法。


    Technological advancements have enhanced the performance of electric-assisted bicycles to facilitate cycling in various terrains and accommodate several riding scenarios. The additional assistive power raised cooperation issues among human force, assistive motor, transmission, and environmental factors, particularly for less-experienced riders. Mismatches among e-bikes, humans, and the environment under dynamic cycling conditions may lead to drawbacks such as range anxiety, a lack of health benefits, or negative riding experiences. An automatic control strategy that considers personally preferred characteristics could alleviate the burdens and enhance the interaction between humans, bikes, and the environment. This research addressed the attributes of e-bike controlling by considering the significance of human performances and responses that may influence the timing and magnitude of transmission and assistance adjustments. The present aims were to elucidate the human factors involved in the decision-making process of e-bike control. A series of studies explored how humans respond to simulated and real environmental resistances. The first study examined the interplay among humans, bikes, and the environment. Riders' responses to e-bike control parameters and environmental resistances were assessed. The collective impact of transmission, assistance, and slope resistance on physiological and subjective responses was measured during indoor stationary e-bike cycling sessions. The second study addressed the role of preferred riding load in the decision-making process of e-bike control during an indoor stationary e-bike riding session. Static slope resistance was supplied to investigate the preferred load, while periodic slope resistance changes were provided to induce e-bike controls. Transmission and assistance adjustments were allowed as per the rider's needs. The range and pattern of preferred load gained knowledge about the human-bike-environment interaction. The third study addressed the role of riding load preference in an indoor riding session with simulated route resistances. A data processing method was proposed to extract the preferred riding parameters. Participants adopted a similar riding load across various slope resistances. Finally, datasets from outdoor ridings were processed and interpreted integrally. The effects of speed, age, and gender were significant on the preferred riding load. Findings from these studies can be used in developing a human-centered automatic control strategy or an adaptive method that tailors e-bike controls to individual preferences.

    摘要 I ABSTRACT III 誌謝 V List of Figures VIII List of Tables X CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Research Objective 10 1.3 Research Structure 11 CHAPTER 2 LITERATURE REVIEW 14 2.1 Factors that impact the human-bike-environment interaction 14 2.2 Current automatic e-bike control technology 20 CHAPTER 3 ASSESSMENT OF HUMAN RESPONSES IN E-BIKE CYCLING 22 3.1 Methods 22 3.2 Results 25 3.3 Discussions 29 3.4 Limitations 33 3.5 Summary 33 CHAPTER 4 THE ASSESSMENT OF CYCLING LOAD PREFERENCE 34 4.1 Methods 34 4.2 Results 37 4.3 Discussions 39 4.4 Limitations 41 4.5 Summary 41 CHAPTER 5 THE ASSOCIATION AMONG RIDING LOAD PREFERENCE, CONTROL BEHAVIOR, AND RIDING RESPONSES IN SIMULATED ROUTE RIDING 43 5.1 Methods 43 5.2 Results 47 5.3 Discussions 50 5.4 Limitations 53 5.5 Summary 54 CHAPTER 6 PROOF OF CONCEPT - THE PREFERRED RIDING LOAD IN OUTDOOR E-BIKE RIDING 55 6.1 Methods 55 6.2 Results 58 6.3 Discussions 65 6.4 Limitations 68 6.5 Summary 68 CHAPTER 7 CONCLUSION 70 7.1 Conclusion 70 7.2 Future Work 71 REFERENCES 72

    A. K, R., & Hegde, S. (2024, 6-8 Jan. 2024). Retrofittable Automatic Shifter of Rear-Derailleur with Mode-Based Transmission and IoT. Paper presented at the 2024 IEEE International Conference on Consumer Electronics (ICCE).
    Abbiss, C. R., Peiffer, J. J., & Laursen, P. B. (2009). Optimal cadence selection during cycling : review article. International SportMed Journal, 10(1), 1-15. doi:doi:10.10520/EJC48370
    Alessio, H. M., Ballard, K. D., Reidy, P. T., Hayward, K. M., Bagg, A. M., Cooley, R. A., . . . Timmerman, K. L. (2024). Short term e-bicycle riding results in favorable cardiometabolic shifts in moderately active adults. Eur J Appl Physiol, 124(7), 1969-1977. doi:10.1007/s00421-024-05418-1
    Alizadehsaravi, L., & Moore, J. K. (2023). Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges. PeerJ, 11, e16206. doi:10.7717/peerj.16206
    Anderson, C. C., Clarkson, D. E., Howie, V. A., Withyman, C. J., & Vandelanotte, C. (2022). Health and well-being benefits of e-bike commuting for inactive, overweight people living in regional Australia. Health Promot J Austr, 33 Suppl 1(Suppl 1), 349-357. doi:10.1002/hpja.590
    Avina-Bravo, E. G., Sodre Ferreira de Sousa, F. A., Escriba, C., Acco, P., Giraud, F., Fourniols, J.-Y., & Soto-Romero, G. (2023). Design and Validity of a Smart Healthcare and Control System for Electric Bikes. Sensors, 23(8). doi:10.3390/s23084079
    Ba Hung, N., Jaewon, S., & Lim, O. (2017). A study of the effects of input parameters on the dynamics and required power of an electric bicycle. Applied Energy, 204, 1347-1362. doi:https://doi.org/10.1016/j.apenergy.2017.03.025
    Behrendt, F., Cairns, S., Raffo, D., & Philips, I. (2021). Impact of E-Bikes on Cycling in Hilly Areas: Participants’ Experience of Electrically-Assisted Cycling in a UK Study. Sustainability, 13(16), 8946. Retrieved from https://www.mdpi.com/2071-1050/13/16/8946
    Berntsen, S., Malnes, L., Langaker, A., & Bere, E. (2017). Physical activity when riding an electric assisted bicycle. Int J Behav Nutr Phys Act, 14(1), 55. doi:10.1186/s12966-017-0513-z
    Bini, R., Wundersitz, D., & Kingsley, M. (2019). Biomechanical and physiological responses to electrically assisted cycling during simulated mail delivery. Applied Ergonomics, 75, 243-249. doi:https://doi.org/10.1016/j.apergo.2018.11.004
    Bini, R. R., Wundersitz, D., & Kingsley, M. (2020). Physiological and biomechanical comparison between electrically assisted bicycles and motorbikes during simulated mail delivery. Ergonomics, 63(2), 123-132. doi:10.1080/00140139.2019.1708477
    Bjørnarå, H. B., Berntsen, S., Te Velde, S. J., Fegran, L., Fyhri, A., Deforche, B., . . . Bere, E. (2017). From cars to bikes - the feasibility and effect of using e-bikes, longtail bikes and traditional bikes for transportation among parents of children attending kindergarten: design of a randomized cross-over trial. BMC Public Health, 17(1), 981. doi:10.1186/s12889-017-4995-z
    Boele-Vos, M. J., Commandeur, J. J. F., & Twisk, D. A. M. (2017). Effect of physical effort on mental workload of cyclists in real traffic in relation to age and use of pedelecs. Accident Analysis & Prevention, 105, 84-94. doi:https://doi.org/10.1016/j.aap.2016.11.025
    Borg, G. A. (1982). Psychophysical bases of perceived exertion. Med Sci Sports Exerc, 14(5), 377-381.
    Bourne, J. E., Cooper, A. R., Kelly, P., Kinnear, F. J., England, C., Leary, S., & Page, A. (2020). The impact of e-cycling on travel behaviour: A scoping review. Journal of Transport & Health, 19, 100910. doi:https://doi.org/10.1016/j.jth.2020.100910
    Burani, E., Cabri, G., & Leoncini, M. (2022). An Algorithm to Predict E-Bike Power Consumption Based on Planned Routes. Electronics, 11(7), 1105. Retrieved from https://www.mdpi.com/2079-9292/11/7/1105
    Cairns, S., Behrendt, F., Raffo, D., Beaumont, C., & Kiefer, C. (2017). Electrically-assisted bikes: Potential impacts on travel behaviour. Transportation Research Part A: Policy and Practice, 103, 327-342. doi:https://doi.org/10.1016/j.tra.2017.03.007
    Chavarren, J., & Calbet, J. A. (1999). Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol Occup Physiol, 80(6), 555-563. doi:10.1007/s004210050634
    Cooper, A. R., Tibbitts, B., England, C., Procter, D., Searle, A., Sebire, S. J., . . . Page, A. S. (2018). Potential of electric bicycles to improve the health of people with Type 2 diabetes: a feasibility study. Diabet Med, 35(9), 1279-1282. doi:10.1111/dme.13664
    de Geus, B., Kempenaers, F., Lataire, P., & Meeusen, R. (2013). Influence of electrically assisted cycling on physiological parameters in untrained subjects. Eur J Sport Sci, 13(3), 290-294. doi:10.1080/17461391.2011.606845
    Debraux, P., Grappe, F., Manolova, A. V., & Bertucci, W. (2011). Aerodynamic drag in cycling: methods of assessment. Sports Biomech, 10(3), 197-218. doi:10.1080/14763141.2011.592209
    Dishman, R. K., Farquhar, R. P., & Cureton, K. J. (1994). Responses to preferred intensities of exertion in men differing in activity levels. Medicine & Science in Sports & Exercise, 26(6), 783-790. Retrieved from https://journals.lww.com/acsm-msse/Fulltext/1994/06000/Responses_to_preferred_intensities_of_exertion_in.19.aspx
    Dozza, M., Bianchi Piccinini, G. F., & Werneke, J. (2016). Using naturalistic data to assess e-cyclist behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 41, 217-226. doi:https://doi.org/10.1016/j.trf.2015.04.003
    Ettema, G., & Lorås, H. W. (2009). Efficiency in cycling: a review. Eur J Appl Physiol, 106(1), 1-14. doi:10.1007/s00421-009-1008-7
    Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling: physiology and training - part 1. Sports Med, 35(4), 285-312. doi:10.2165/00007256-200535040-00002
    Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I.-M., . . . Swain, D. P. (2011). Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. 43(7), 1334-1359. doi:10.1249/MSS.0b013e318213fefb
    Gehlert, T., Kühn, M., Schleinitz, K., Petzoldt, T., Schwanitz, S., & Gerike, R. (2012). The German Pedelec Naturalistic Cycling Study - Study Design and First Experiences.
    Glass, S. C., & Chvala, A. M. (2001). Preferred exertion across three common modes of exercise training. J Strength Cond Res, 15(4), 474-479.
    Gojanovic, B., Welker, J., Iglesias, K., Daucourt, C., & Gremion, G. (2011). Electric bicycles as a new active transportation modality to promote health. Med Sci Sports Exerc, 43(11), 2204-2210. doi:10.1249/MSS.0b013e31821cbdc8
    Höchsmann, C., Meister, S., Gehrig, D., Gordon, E., Li, Y., Nussbaumer, M., . . . Schmidt-Trucksäss, A. (2018). Effect of E-Bike Versus Bike Commuting on Cardiorespiratory Fitness in Overweight Adults: A 4-Week Randomized Pilot Study. Clin J Sport Med, 28(3), 255-265. doi:10.1097/jsm.0000000000000438
    Haile, L., Goss, F. L., Andreacci, J. L., Nagle, E. F., & Robertson, R. J. (2019). Affective and metabolic responses to self-selected intensity cycle exercise in young men. Physiol Behav, 205, 9-14. doi:10.1016/j.physbeh.2019.02.012
    Haufe, S., Boeck, H. T., Häckl, S., Boyen, J., Kück, M., van Rhee, C. C., . . . Tegtbur, U. (2022). Impact of electrically assisted bicycles on physical activity and traffic accident risk: a prospective observational study. BMJ Open Sport & Exercise Medicine, 8(4), e001275. doi:10.1136/bmjsem-2021-001275
    Higashi, D., Imai, T., Ueno, A., & Miyashita, O. (2009, 15-18 Nov. 2009). A Wearable capacitive heart-rate monitor for controlling electrically assisted bicycle. Paper presented at the 2009 International Conference on Electrical Machines and Systems.
    Hsu, R. C., Liu, C. T., & Chan, D. Y. (2012). A Reinforcement-Learning-Based Assisted Power Management With QoR Provisioning for Human–Electric Hybrid Bicycle. IEEE Transactions on Industrial Electronics, 59(8), 3350-3359. doi:10.1109/TIE.2011.2141092
    Hughey, S. M., Sella, J., Adams, J. D., Porto, S. C., Bornstein, D., Brown, K., . . . Davis, W. J. (2022). It's electric! Measuring energy expenditure and perceptual differences between bicycles and electric-assist bicycles. Journal of Transport & Health, 27, 101523. doi:https://doi.org/10.1016/j.jth.2022.101523
    Jenkins, M., O'Rourke, N., Lustosa, L. G., La Delfa, N., & Dogra, S. (2023). Self-selected pedal-assist E-bike use in older adults is moderate-vigorous intensity. Journal of Transport & Health, 31, 101647. doi:https://doi.org/10.1016/j.jth.2023.101647
    Kazemzadeh, K., & Ronchi, E. (2022). From bike to electric bike level-of-service. Transport Reviews, 42(1), 6-31. doi:10.1080/01441647.2021.1900450
    Kim, D. H., Lee, D., Kim, Y., Kim, S., & Shin, D. (2021). A Power Assistant Algorithm Based on Human–Robot Interaction Analysis for Improving System Efficiency and Riding Experience of E-Bikes. Sustainability, 13(2), 768. Retrieved from https://www.mdpi.com/2071-1050/13/2/768
    Langford, B. C., Cherry, C. R., Bassett, D. R., Fitzhugh, E. C., & Dhakal, N. (2017). Comparing physical activity of pedal-assist electric bikes with walking and conventional bicycles. Journal of Transport & Health, 6, 463-473. doi:https://doi.org/10.1016/j.jth.2017.06.002
    Laqua, A., Schnee, J., Pletinckx, J., & Meywerk, M. (2023). Identification of factors influencing the riding experience on e-mountain bikes: An analysis of the rider-bicycle interaction. Transportation Research Part F: Traffic Psychology and Behaviour, 98, 61-72. doi:https://doi.org/10.1016/j.trf.2023.08.008
    Lee, J.-S., Chen, Z.-H., & Hong, Y. (2024). Enhancing Urban Mobility with Self-Tuning Fuzzy Logic Controllers for Power-Assisted Bicycles in Smart Cities. Sensors, 24(5), 1552. Retrieved from https://www.mdpi.com/1424-8220/24/5/1552
    Lee, J.-S., & Jiang, J.-W. (2019). Enhanced fuzzy-logic-based power-assisted control with user-adaptive systems for human-electric bikes. IET Intelligent Transport Systems, 13(10), 1492-1498. doi:https://doi.org/10.1049/iet-its.2019.0092
    Lee, K., & Sener, I. N. (2023). E-bikes Toward Inclusive Mobility: A Literature Review of Perceptions, Concerns, and Barriers. Transportation Research Interdisciplinary Perspectives, 22, 100940. doi:https://doi.org/10.1016/j.trip.2023.100940
    Louis, J., Brisswalter, J., Morio, C., Barla, C., & Temprado, J. J. (2012). The electrically assisted bicycle: an alternative way to promote physical activity. Am J Phys Med Rehabil, 91(11), 931-940. doi:10.1097/PHM.0b013e318269d9bb
    Lucía, A., Hoyos, J., & Chicharro, J. L. (2001). Preferred pedalling cadence in professional cycling. Med Sci Sports Exerc, 33(8), 1361-1366. doi:10.1097/00005768-200108000-00018
    Martnes, J. J., & Bere, E. (2023). Physical activity when riding an electric-assisted bicycle with and without cargo. Front Sports Act Living, 5, 1179043. doi:10.3389/fspor.2023.1179043
    Matyja, T., Kubik, A., & Stanik, Z. (2022). Possibility to Use Professional Bicycle Computers for the Scientific Evaluation of Electric Bikes: Velocity, Cadence and Power Data. Energies, 15(3), 1127. Retrieved from https://www.mdpi.com/1996-1073/15/3/1127
    Mayr, P., Falgenhauer, M., Modre-Osprian, R., Hofmann, P., Traninger, H., Rath, M., & Schreier, G. (2018). HEALTHeBIKES - Smart E-Bike Prototype for Controlled Exercise in Telerehabilitation Programs. Stud Health Technol Inform, 248, 307-313.
    McQueen, M., MacArthur, J., & Cherry, C. (2020). The E-Bike Potential: Estimating regional e-bike impacts on greenhouse gas emissions. Transportation Research Part D: Transport and Environment, 87, 102482. doi:https://doi.org/10.1016/j.trd.2020.102482
    McVicar, J., Keske, M. A., Daryabeygi-Khotbehsara, R., Betik, A. C., Parker, L., & Maddison, R. (2022). Systematic review and meta-analysis evaluating the effects electric bikes have on physiological parameters. Scandinavian Journal of Medicine & Science in Sports, 32(7), 1076-1088. doi:https://doi.org/10.1111/sms.14155
    Meyer, D., Zhang, W., Tomizuka, M., & Senner, V. (2015). Heart Rate Regulation with Different Heart rate Reference Profiles for Electric Bicycle Riders. Procedia Manufacturing, 3, 4213-4220. doi:https://doi.org/10.1016/j.promfg.2015.07.398
    Mieras, M. E., Heesch, M. W., & Slivka, D. R. (2014). Physiological and psychological responses to outdoor vs. laboratory cycling. J Strength Cond Res, 28(8), 2324-2329. doi:10.1519/jsc.0000000000000384
    Nagata, T., Okada, S., & Makikawa, M. (2012). Electric motor assisted bicycle as an aerobic exercise machine. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 1933-1935. doi:10.1109/embc.2012.6346332
    Oliveira, B. R., Deslandes, A. C., Nakamura, F. Y., Viana, B. F., & Santos, T. M. (2015). Self-selected or imposed exercise? A different approach for affective comparisons. J Sports Sci, 33(8), 777-785. doi:10.1080/02640414.2014.968191
    Olsson, K. S. E., Ceci, R., Wahlgren, L., Rosdahl, H., & Schantz, P. (2024). Perceived exertion can be lower when exercising in field versus indoors. PLoS One, 19(5), e0300776. doi:10.1371/journal.pone.0300776
    Pallarés, J. G., & Lillo-Bevia, J. R. (2018). Validity and Reliability of the PowerTap P1 Pedals Power Meter. J Sports Sci Med, 17(2), 305-311.
    Peterman, J. E., Morris, K. L., Kram, R., & Byrnes, W. C. (2016). Pedelecs as a physically active transportation mode. Eur J Appl Physiol, 116(8), 1565-1573. doi:10.1007/s00421-016-3408-9
    Rauffet, P., Chauvin, C., Morel, G., & Berruet, P. (2015). Designing sociotechnical systems: a CWA-based method for dynamic function allocation.
    Rauter, S., Supej, M., & Vodičar, J. (2023). Examining the Efficiency of Electric-Assisted Mountain Biking across Different Types of Terrain. Applied Sciences, 13(21). doi:10.3390/app132111677
    Rey-Barth, S., Eychenne, C., Rolland, C., Pinsault, N., & Bosson, J. L. (2020). Use of a smart electrically assisted bicycle (VELIS) in the health field -Proof of concept. Medical Engineering & Physics, 81, 125-129. doi:https://doi.org/10.1016/j.medengphy.2020.04.004
    Simons, M., Van Es, E., & Hendriksen, I. (2009). Electrically assisted cycling: a new mode for meeting physical activity guidelines? Med Sci Sports Exerc, 41(11), 2097-2102. doi:10.1249/MSS.0b013e3181a6aaa4
    Sousa, N., Coutinho-Rodrigues, J., & Gonçalves, A. (2017). Pedelec on a hilly city: a case study in Coimbra.
    Sperlich, B., Zinner, C., Hebert-Losier, K., Born, D. P., & Holmberg, H. C. (2012). Biomechanical, cardiorespiratory, metabolic and perceived responses to electrically assisted cycling. Eur J Appl Physiol, 112(12), 4015-4025. doi:10.1007/s00421-012-2382-0
    Stenner, H. T., Boyen, J., Hein, M., Protte, G., Kuck, M., Finkel, A., . . . Tegtbur, U. (2020). Everyday Pedelec Use and Its Effect on Meeting Physical Activity Guidelines. International journal of environmental research and public health, 17(13), 4807. doi:10.3390/ijerph17134807
    Stilo, L., Lugo, H., Velandia, D. S., Conway, P. P., & West, A. A. (2021). Personalised Controller Strategies for Next Generation Intelligent Adaptive Electric Bicycles. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7814-7825. doi:10.1109/TITS.2020.3009400
    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156. doi:https://doi.org/10.1016/S0735-1097(00)01054-8
    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. J Am Coll Cardiol, 37(1), 153-156. doi:10.1016/s0735-1097(00)01054-8
    Twisk, D., Stelling, A., Van Gent, P., De Groot, J., & Vlakveld, W. (2021). Speed characteristics of speed pedelecs, pedelecs and conventional bicycles in naturalistic urban and rural traffic conditions. Accident Analysis & Prevention, 150, 105940. doi:https://doi.org/10.1016/j.aap.2020.105940
    Twisk, D. A. M., Platteel, S., & Lovegrove, G. R. (2017). An experiment on rider stability while mounting: Comparing middle-aged and elderly cyclists on pedelecs and conventional bicycles. Accident Analysis & Prevention, 105, 109-116. doi:https://doi.org/10.1016/j.aap.2017.01.004
    Uyar, O., Çunkaş, M., & Karaca, H. (2022). Enhanced intelligent control with adaptive system for electrically assisted bicycle. Engineering Science and Technology, an International Journal, 30, 101047. doi:https://doi.org/10.1016/j.jestch.2021.08.004
    Waitt, G., Buchanan, I., Lea, T., & Fuller, G. (2022). COVID-19, commuter territories and the e-bike boom. Area (Oxf). doi:10.1111/area.12814
    Warburton, D. E. R., Jamnik, V., Bredin, S. S. D., Shephard, R. J., & Gledhill, N. (2018). The 2019 Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) and electronic Physical Activity Readiness Medical Examination (ePARmed-X+): 2019 PAR-Q+. The Health & Fitness Journal of Canada, 11(4), 80-83. doi:10.14288/hfjc.v11i4.270
    Watson, G., & Swensen, T. (2006). Effects of Altering Pedal Cadence on Cycling Time-Trial Performance. Int J Sports Med, 27(04), 296-300.
    Wright, J., Walker, T., Burnet, S., & Jobson, S. A. (2019). The Reliability and Validity of the PowerTap P1 Power Pedals Before and After 100 Hours of Use. Int J Sports Physiol Perform, 14(6), 855–858. doi:10.1123/ijspp.2018-0563
    Yang, S.-C., & Lee, Y.-J. (2021). Integrated Physiological, Biomechanical, and Subjective Responses for the Selection of Assistive Level in Pedelec Cycling. Front Physiol, 12. doi:10.3389/fphys.2021.740728
    Yang, S.-C., & Lee, Y.-J. (2024a). Exploring the preferred load pattern and physiological intensity for on-road exercising with electrically assisted bicycles. Journal of Transport & Health, 37, 101831. doi:https://doi.org/10.1016/j.jth.2024.101831
    Yang, S.-C., & Lee, Y.-J. (2024b). Optimizing E-bike controls for human-bike interaction to enhance riding experience and efficiency. International Journal of Industrial Ergonomics, 104, 103651. doi:https://doi.org/10.1016/j.ergon.2024.103651
    Yingfeng, L., & Minghu, W. (2021). Research on management and control strategy of E-bikes based on attribute reduction method. Applied Mathematics and Nonlinear Sciences, 6(2), 161-170. doi:doi:10.2478/amns.2021.2.00020

    QR CODE