簡易檢索 / 詳目顯示

研究生: 周三童
論文名稱: 區塊抽樣之熵指標估計
Estimation of Shannon Entropy in Quadrat Sampling
指導教授: 趙蓮菊
口試委員: 洪志真
鄭又仁
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 熵指標區塊抽樣
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物多樣性對地球生態以及人類生活息息相關,使用多樣性指標去量化群落,有助於了解生態的現狀與其變化,本文著重在生態學家常使用的熵指標,衡量群落之多樣性。藉由假設簡單隨機抽樣的區塊資料為白努力乘積模型,探討區塊資料下的熵指標估計,但由於此指標的形式複雜造成估計上的困難,首先考慮常用且簡便的估計方式:最大概似估計量與摺刀法,但前者會造成嚴重低估,而後者能作的偏差修正有限,文本修正過去估計之方法以應用在區塊資料上,且利用Good-Turing (1953, 2000) 的頻率理論來導正新的估計量,進而改善與修正熵指標估計。另外針對提出來討論的估計量提出變異數估計,由於傳統的拔靴標準差估計因為稀有物種與豐富物種的相對關係,使得樣本出現機率與母體的真實機率頗有差距,亦即表示無法直接地透過樣本對母體作推論,需要經過適時地修正各物種的出現機率,之後使用修正後的拔靴方法作出較精確的變異數或標準差估計。對於每種估計量以電腦進行模擬並討論估計結果,同時結合實例上的分析,更能清楚地說明實務上的應用,了解熵指標估計對於多樣性的重要性。


    第一章 緒論 1 第二章 符號與模型及相關文獻回顧 4 2.1模型假設與符號介紹 4 2.1.1區塊資料的抽樣方法與模型假設 4 2.1.2區塊資料的符號說明 5 2.2相關文獻回顧 7 2.2.1 區塊資料的物種數及其估計 7 2.2.2 區塊資料的樣本涵蓋率及其估計 9 2.2.3 摺刀法(Jackknife method)估計量 11 2.2.4 Horvitz-Thompson估計量 12 2.2.5 拔靴方法的標準差估計與偏差修正 13 第三章 Shannon熵指標及其估計量 18 3.1. 區塊資料熵指標介紹 18 3.2. 區塊資料熵指標估計量 19 3.2.1 最大概似估計量 20 3.2.2 最大概似估計量與偏差修正 20 3.2.3 摺刀法估計量 22 3.2.4 Horvitz-Thompson估計量 22 3.2.5本文建議之估計量 24 第四章 模擬研究與討論 27 4.1 模擬試驗設定說明 27 4.2 模擬的結果與討論 29 第五章 實例分析 33 5.1螞蟻物種區塊資料 33 5.2五大洲纖毛物種區塊資料 36 第六章 結論與後續研究 39 附錄 41 附錄A:最大概似估計量近似偏差推導 41 附錄B:四種試驗下的模擬結果 47 附錄C:四種試驗下的偏差與均方根誤差表現情形 55 附錄D:實例資料的頻率個數 59 參考文獻 68

    [1] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265-270.
    [2] Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrika 43, 783-791.
    [3] Chao, A., and Shen, T. J. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species. Environmental and Ecological Statistics 10, 429-443.
    [4] Chao, A., and Shen, T. J. (2010). Program SPADE (species prediction and diversity estimation). Program and user’s guide published at http://chao.stat.nthu.edu.tw.
    [5] Chao, A., and Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 52, 2533-2547.
    [6] Chao, A., Wang, Y. T., and Jost, L. (2013). Species accumulation curve and entropy: A very accurate estimator of entropy. Methods in Ecology and Evolution, under revision.
    [7] Colwell, R. K., Mao, C. X., and Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717-2727.
    [8] Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264.
    [9] Good, I. J. (2000). Turing’s anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma. Journal of Statistical Computation and Simulation 66, 101-111.
    [10] Haas, P. J., Liu, Y., and Stokes, L. (2006). An estimator of number of species from quadrat sampling. Biometrics 62, 135-141.
    [11] Horvitz, D. G., and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47, 663-685.
    [12] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology 88, 2427-2439.
    [13] Miller, G. A. (1954). Note on the basis of information estimates. Information Theory in Psychology, 95-100.
    [14] Quenouille, M. (1949). Approximate tests of correlation in time series. Journal of the Royal Statistical Society 11, 68-84.
    [15] Shannon, C. E. (1948). The mathematical theory of communication. Bell System Technical Journal 27, 379-423.
    [16] Shen, T. J., Chao, A., and Lin, C. F. (2003). Predicting the number of new species in further taxonomic sampling. Ecology 84, 798-804.
    [17] Simpson, E. H. (1949). Measurement of diversity. Nature 163, 688.
    [18] Steck, H., and Jaakkola, T. S. (2003). Bias-corrected bootstrap and model uncertainty. NIPS.
    [19] Tukey, J. (1958). Bias and confidence in not quite large samples. Annals of Mathematical Statistics 29, 614.
    [20] Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon 12, 213-251.
    [21] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013). 仰觀宇宙之大,俯察品類之盛:如何量化生物多樣性 Journal of the Chinese Statistical Association 51, 8-53.
    [22] 王怡婷 (民 100) Hill數值指標與相似度指標的統計估計 Statistical estimation of Hill numbers and similarity index趙蓮菊指導 新竹市國立清華大學統計學研究所博士論文.
    [23] 鄭創元 (民 99) 稀有物種相對豐富度之統計估計法 Statistical estimation of the relative abundance for rare species趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文.
    [24] 李孝寬 (民 100) 物種曲線拔靴標準差修正法模擬分析與軟體開發 A simulation study and software development of the bootstrap standard deviation for species accumulation curve 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE