簡易檢索 / 詳目顯示

研究生: 瓦蘇德萬
THANGARAJI, VASUDEVAN
論文名稱: 熱活化延遲放光與三重態-三重態激發子淬熄之有機發光材料及其於有機電致發光元件之應用
Thermally Activated Delayed Fluorescence and Triplet-Triplet Annihilation Emitters and Their Application in Organic Electroluminescent Devices
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 廖文峯
Liaw, Wen-Feng
陳登銘
Chen, Teng-Ming
洪文誼
Hung, Wen-Yi
周鶴修
Chou, Ho-Hsiu
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 208
中文關鍵詞: 有機發光二極體熱活化延遲螢光三重激發子電子予體 電子受體藍光、綠光摻雜物螢光
外文關鍵詞: OLED, TADF, TTA, Donor-Acceptor, Blue, Green Dopant, Hyperfluoresence
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    在這篇論文中,我們將探討熱活性延遲螢光及三重態-三重態淬熄之發光體在有機發光二極體元件中的應用。首先透過理論計算(TD-DFT)分別設計及合成有機材料分子、探討材料的光物理性質後,根據材料的特性進行發光元件的製作,並對其光電性質進行分析及討論。這篇論文將分成四個部分來探討我們的研究成果
    首先第一篇章節我們設計並合成了一系列高效率藍色的熱活化延遲螢光放光材料,包括1.4BPy-mDTC、1.3Py-mDTC、1.2BPy-mDTC、1.BP-mDTC。這一系列的分子設計包含了互相兩個位於間位的3,6-二叔丁基咔唑連結至苯甲醯基吡啶或者是二苯基甲酮基團上。這四個有機材料分子的放光波長從458-488 nm,屬於藍光的範圍;而且製成薄膜態後其具有不錯的光量子效率75-96%,與相當小的單重激發態與三重激發態能階差(ΔEST)從0.01-0.05 eV。並由於這些分子具有相當小的ΔEST使得其具有熱活化延遲螢光放光的特性,使用暫態延遲螢光光譜儀量測後發現,具有直接螢光及延遲螢光的特性出現,並隨著溫度的提升延遲螢光的強度也隨之提升。可能是由於吡啶與苯環上的氫互相作用,造成更加堅固的結構使得BPy系列的螢光材料(PLQY>92%)相較於1.BP-mDTC(75%)皆具有更高的光量子效率。將客體摻雜材料1.4BPy-mDTC與1.2BPy-mDTC製成元件後,放光顏色為水藍色、最大外部量子效率(External Quantum Efficiencies)超過28%。吡啶環上氮原子的位置對於量子效率及元件效率的影響是相當重要的,並且我們發現透過將苯環替換成吡啶後,對於光量子效率、外部量子效率及最大亮度都有相當程度的提升。
    第二章節中我們設計三種以喹啉為主體,設計與合成三種熱活化延遲螢光放光材料2.2QPM-mDC、2.2QPM-mDTC及2.4QPM-mDTC。三個材料皆具有相當小的ΔEST約0.07 eV和高量子效率約98%。其中使用2.2QPM-mDTC作為客體材料的元件,經過最佳化後可以達到超過24%的外部量子效率。與其他已發表的文獻相比,製成元件後具有相當小的半波寬及高的色純度。2.2QPM-mDTC可以有如此不錯的表現,可能是由於其分子的結構中具有分子內氫鍵,造成分子不易震動及轉動,使得其具有較佳的效率及色純度的表現。
    在第三個章節中,我們設計以電子予體-電子受體為結構的3.ThX-27DTC及3.ThXO-27DTC兩種熱活化延遲螢光放光材料,兩個分子皆具有較小的ΔEST與高的光量子效率。製成元件後,最高分別可以達到約17.8%與15.5%的外部量子效率、放光峰波長分別是486 nm與562 nm、電流效率分別為38.8 cd/A與54.4 cd/A,並無套用任何增加出光率的結構。其中發光效率更分別達到34.7 lm/W與42.5 lm/W及達到最大亮度8559 cd/m2及17009 cd/m2。這種以D-A為結構主體的設計方式,對於使熱活化延遲螢光放光材料達到高的光量子效率具有正向的幫助。
    在第四的部分中,(4.TAA-PPO 及 4.CzA-PPO) 我們將設計與合成兩種雙偶極性綠色的三重態-三重態淬熄之發光體應用在未摻雜的發光二極體元件(non-doped device)中,可以達到最高外部量子效率為7.2%。此外,這些元件具有相當低的啟動電壓2.5V及相當高的亮度103,500 cd/m2,其最大亮度可以和傳統使用昂貴的磷光材料相互比較。而元件的外部量子效率依然可以在高亮度(20,000 cd/m2)的情況下,維持最大外部量子效率的90%。這個部分中,我們提出了對於高效率未摻雜元件與低啟動電壓元件有效的設計方式,並提出了可以透過簡單的方式增加元件的表現。此外,我們也透過使用其他熱活性延遲螢光放光材料作為協助客體摻雜材料,並達到最高17.8%的外部量子效率


    ABSTRACT
    This dissertation, thermally activated delayed fluorescence and triplet-triplet annihilation emitters in OLEDs applications. Theoretical calculation (TD-DFT), designed and synthesis, Photophysical properties, device fabrication and Electroluminescence properties have been discussed. This thesis is divided into four chapters for easy to understanding.
    Chapter one is a series of highly efficient blue TADF emitters including (1.4BPy-mDTC), (1.3BPy-mDTC), (1.2BPy-mDTC) and (1.BP-mDTC) were designed and synthesized. The molecular structures feature two meta carbazole substituents attached to a benzoylpyridine (BPy) group or to a benzophenone (BP) group. These compounds, blue emissions (458–488 nm), high photoluminescence quantum yields (PLQY) (75–96%) in thin films and very small energy gaps between S1 and T1 (ΔEST) of 0.01–0.05 eV. In addition, they all reveal TADF properties including small ΔEST, two components in the transient PL decays, prompt emission and temperature-dependent delayed emission. The BPy series appears to give much higher photoluminescence quantum yields (PLQY > 92%) than 1.BP-mDTC (75%) plausibly due to the more rigid structure caused by the interaction between pyridine nitrogen and the aromatic C–H bond. The electroluminescent devices based on 1.4BPy-mDTC and 1.2BPy-mDTC as the dopant emitters exhibit sky blue emission with maximum external quantum efficiencies (EQEs) over 28. The presence of the pyridine ring and the position of the nitrogen atom in the molecules are critical for the high quantum yield and device efficiency. The PLQY EQE and luminance are dramatically improved by changing the phenyl into a pyridine group in the dopant in these devices.
    Chapter two is three new quinoline TADF emitters, 2.2QPM-mDC, 2.2QPM-mDTC and 2.4QPM-mDTC, were designed and synthesized and the emitters show ΔEST as low as 0.07 eV and high PL quantum yield (PLQY) up to 98%. An electroluminescence device based on 2.2QPM-mDTC can reach high EQE over 24%. Compared with the reported TADF devices, the device shows narrow emission band width and high color purity. The excellent device performance is likely ascribed to the molecular design of 2.2QPM-mDTC containing an intramolecular H-bonding in the molecule.
    Chapter three is designed and synthesized, their electroluminance properties were discussed in two TADF emitters based on a donor and acceptor types of molecules (3.ThX-27DTC and 3.ThXO-27DTC) and these emitters concurrently possess low ΔEST and high PLQY. An electroluminescence device based on 3.ThX-27DTC and 3.ThXO-27DTC as the emitter reached a high EQE over 17.8% and 15.5%, emission band 486 nm and 562 nm, current efficiency of 38.8 cd/A and 54.4 cd/A without any light out coupling technique, with respectively. The power efficiency reached up to 34.7 lm/W and 42.5 lm/W and with a maximum brightness of 8559 cd/m2 and 17009 cd/m2, 3.ThX-27DTC and 3.ThXO-27DTC with respectively. This strategy very useful for making donor and acceptor types of TADF molecules with high PLQY.
    Chapter four is designed and synthesized two bipolar green TTA emitters (4.TAA-PPO and 4.CzA-PPO) with an appropriate hole and the electron transporting unit for non-doped device fabrication. Using these compounds as a self-host emitter (non-doped), the external quantum efficiencies over 7.2% were achieved. In addition, the device shows a very low turn-on voltage of 2.5 V and high brightness 103500 cd/m2 which is comparable to the expensive phosphorescent OLEDs. Moreover, device retain the 90% of the maximum external quantum efficiency and current efficiency even at 20000 cd/m2. The manuscript provides an effective strategy to design molecules for highly efficient non-doped OLEDs with low operating voltage. This strategy opens up a new route to enhance the efficiency of device with an easy fabrication process. Furthermore, the ultimate device performance 17.8% of EQE is achieved from this emitter using TADF material as an assistant dopant.

    TABLE OF CONTENTS Abstract II Acknowledgement VI List of Chapters VIII List of Schemes XII List of Tables XIII List of Figures XV List of Publications XXI Abbreviations and Symbols XXII   LIST OF CHAPTERS Chapter-I: Background and Introduction of OLEDs I. 1 History of organic electroluminescence-----------------------------------------------3 I. 2 Basic OLED structure and mechanism------------------------------------------------4 I. 3 Light emitting materials for OLED devices------------------------------------------7 I. 4 The emission efficiency of OLEDs---------------------------------------------------14 I. 5 Research motivation of the present work--------------------------------------------19 I. 6 References-------------------------------------------------------------------------------21 Chapter-1: Thermally activated delayed fluorescence emitters with a m, m-di-tert-butyl-carbazolyl benzoylpyridine core achieving extremely high blue electroluminescence efficiencies. 1. 1 Introduction-----------------------------------------------------------------------------27 1. 2 Theoretical calculation (TD-DFT)---------------------------------------------------29 1. 3 Synthesis scheme-----------------------------------------------------------------------34 1. 4 Thermal properties---------------------------------------------------------------------37 1. 5 Photophysical properties--------------------------------------------------------------38 1. 6 Electrochemical properties------------------------------------------------------------46 1. 7 Electroluminescence properties------------------------------------------------------48 1. 8 Conclusion------------------------------------------------------------------------------56 1. 9 Synthesis procedure and Spectroscopic data----------------------------------------56 1. 10 References-----------------------------------------------------------------------------60 Chapter-2: Quinolinylmethanone-Based Thermally Activated Delayed Fluorescence Emitters and the Application in OLEDs: Effect of Intramolecular H‑Bonding 2.1 Introduction------------------------------------------------------------------------------68 2.2 Theoretical calculation (TD-DFT)----------------------------------------------------70 2.3 Synthesis scheme and Crystal structure----------------------------------------------77 2.4 Thermal properties----------------------------------------------------------------------79 2.5 Photophysical properties---------------------------------------------------------------80 2.6 Electrochemical properties------------------------------------------------------------88 2.7 Electroluminescence properties-------------------------------------------------------89 2.8 Conclusion-------------------------------------------------------------------------------98 2.9 Synthesis procedure and Spectroscopic data----------------------------------------98 2.10 References----------------------------------------------------------------------------102   Chapter-3: Thioxanthene-Based Blue-Orange Thermally Activated Delayed Fluorescence Emitters and the Application in Efficient OLEDs. 3. 1 Introduction----------------------------------------------------------------------------107 3. 2 Theoretical calculation (TD-DFT)--------------------------------------------------109 3. 3 Synthesis scheme---------------------------------------------------------------------113 3. 4 Thermal properties--------------------------------------------------------------------114 3. 5 Photophysical properties-------------------------------------------------------------115 3. 6 Electrochemical properties----------------------------------------------------------120 3. 7 Electroluminescence properties-----------------------------------------------------121 3. 8 Conclusion-----------------------------------------------------------------------------128 3. 9 Synthesis procedure and Spectroscopic data---------------------------------------129 3. 10 References----------------------------------------------------------------------------133 Chapter-4: High Performance non-doped Green Organic Light Emitting Diode via Triplet-Triplet Annihilation and Hyperfluoresence 4. 1 Introduction----------------------------------------------------------------------------138 4. 2 Theoretical calculation (TD-DFT)--------------------------------------------------140 4. 3 Synthesis scheme---------------------------------------------------------------------142 4. 4 Thermal properties--------------------------------------------------------------------144 4. 5 Photophysical properties-------------------------------------------------------------144 4. 6 Electrochemical properties----------------------------------------------------------147 4. 7 Electroluminescence properties-----------------------------------------------------148 4. 8 Conclusion-----------------------------------------------------------------------------156 4. 9 Synthesis procedure and Spectroscopic data---------------------------------------157 4. 10 References----------------------------------------------------------------------------160   LIST OF SCHEMES Scheme 1. 3 Synthesis scheme of 1.4BPy-mDTC, 1.3BPy-mDTC, 1.2BPy-mDTC and 1.BP-mDTC ----------------------------------------------------------------------------34 Scheme 2. 3 Synthesis scheme of 2QPM-mDC, 2QPM-mDTC and 4QPM-mDTC---------------------------------------------------------------------------------------------------77 Scheme 3. 3 Synthesis scheme of 3.ThX-27DTC and 3.ThXO-27DTC ----------113 Scheme 4. 3 Synthesis scheme of 4.TAA-PPO and 4.CzA-PPO ------------------142   LIST OF TABLES Chapter-1 Table 1. 1. Main transitions and electron contour plots of molecular orbitals of 1.4BPy-mDTC ------------------------------------------------------------------------------31 Table 1. 2. Main transitions and electron contour plots of molecular orbitals of 1.3BPy-mDTC-------------------------------------------------------------------------------32 Table 1. 3. Main transitions and electron contour plots of molecular orbitals of 1.2BPy-mDTC-------------------------------------------------------------------------------33 Table 1. 4. Main transitions and electron contour plots of molecular orbitals of 1.BP-mDTC----------------------------------------------------------------------------------34 Table 1. 5 Physical properties of 1.4BPy-mDTC(A), 1.3BPy-mDTC(B), 1.2BPy-mDTC(C) and 1.BP-mDTC(D)------------------------------------------------------------40 Table 1. 6. EL performances of the devices using 1.4BPy-mDTC, 1.3BPy-mDTC, 1.2BPy-mDTC and 1.BP-mDTC----------------------------------------------------------50 Chapter-2 Table 2. 1. Singlet and triplet excitation states, excitation energy,a excitation wavelength,b oscillator strength (f),c and transition configurations of 2.2QPM-mDC by TD-DFT at the B3LYP/6-31G(d,p)--------------------------------------------73 Table 2. 2. Singlet and triplet excitation states, excitation energya, excitation wavelengthb, oscillator strengthc (f), and transition configurations of the 2.2QPM-mDTC by TD-DFT at the B3LYP/6-31G(d,p)------------------------------------------74 Table 2. 3. Singlet and triplet excitation states, excitation energya, excitation wavelengthb, oscillator strengthc (f), and transition configurations of the 2.4QPM-mDTC by TD-DFT at the B3LYP/6-31G(d,p)------------------------------------------75 Table 2. 4. Photophysical properties of 2.2QPM-mDC, 2.2QPM-mDTC and 2.4QPM-mDTC-----------------------------------------------------------------------------85 Table 2. 5. EL performances of devices 2G1-2G6 using 2.2QPM-mDC, 2.2QPM-mDTC and 2.4QPM-mDTC as dopants--------------------------------------------------93 Table 2. 6. EL performances of devices 2G7-2G9 using 2.2QPM-mDC, 2.2QPM-mDTC and 2.4QPM-mDTC as dopants--------------------------------------------------95 Chapter-3 Table 3. 1. Singlet and triplet excitation states, excitation energya, excitation wavelengthb, oscillator strengthc (f), and transition configurations of the 3.ThX-27DTC by TD-DFT at the B3LYP/6-31G(d,p)----------------------------------------111 Table 3. 2. Singlet and triplet excitation states, excitation energya, excitation wavelengthb, oscillator strengthc (f), and transition configurations of the 3.ThXO-27DTC by TD-DFT at the B3LYP/6-31G(d,p)----------------------------------------112 Table 3. 3. Photophysical properties of 3.ThX-27DTC and 3.ThXO-27DTC----118 Table 3. 4. EL performances of devices 3B1-3B2 and 3O1-3O2 using 3.ThX-27DTC and 3.ThXO-27DTC as dopants-----------------------------------------------124 Table 3. 5. EL performances of devices 3B3 and 3O3 using 3.ThX-27DTC and 3.ThXO-27DTC as dopants--------------------------------------------------------------126 Chapter-4 Table 4. 1. Optoelectronic and thermal properties of 4.TAA-PPO and 4.CzA-PPO------------------------------------------------------------------------------------------------146 Table 4. 2. EL performances of the device G1 and G2------------------------------150 Table 4. 3. EQE of the device G1 and G2 at various luminance-------------------154 Table 4. 4. Current efficiency (CE) of the device G1 and G2 at various luminance------------------------------------------------------------------------------------------------154 Table 4. 5 EL performances of the device with TADF assistant dopanta---------157   LIST OF FIGURES Chapter-1 Figure 1. 1. Structure of the molecules, 1.4BPy-mDTC, 1.3BPy-mDTC, 1.2BPy-mDTC and 1.BP-mDTC--------------------------------------------------------------------29 Figure 1. 2. Molecular orbitals of a) 1.4BPy-mDTC, b) 1.3BPy-mDTC, c) 1.2BPy-mDTC and d) 1.BP-mDTC-----------------------------------------------------------------30 Figure 1. 3. The thermogravimetric thermograms of 1.4BPy-mDTC, 1.3BPy-mDTC, 1.2BPy-mDTC and 1.BP-mDTC------------------------------------------------37 Figure 1. 4. Absorbance spectra and fluorescence spectra of 1.4BPy-mDTC (a and b), 1.3BPy-mDTC (c and d) 1.2BPy-mDTC (e and f) and 1.BP-mDTC (g and h) in various solvents at RT (10-5 M)-----------------------------------------------------------39 Figure 1. 5. Absorption (Abs.) and fluorescence (Fl.) spectra in toluene (10-5 M) measured at room temperature and phosphorescence (Phos.) spectra in toluene (10-5 M) measured at 77 K---------------------------------------------------------------------41 Figure 1. 6. Absorption (Abs.) and fluorescence (Fl.) spectra of 1.3BPy-mDTC (a) and 1.2BPy-mDTC (b) in toluene (10-5 M) solution measured at room temperature and phosphorescence (Phos.) spectra in toluene (10-5 M) measured at 77 K-------41 Figure 1. 7. Fluorescence (Fl.) and phosphorescence (Phos.) spectra of 7 wt% a) 1.4BPy-mDTC, b) 1.3BPy-mDTC, c) 1.2BPy-mDTC and d) 1.BP-mDTC doped in mCBP films. Fluorescence spectra were measured at room temperature and phosphorescence spectra were measured at 77 K---------------------------------------42 Figure 1. 8. Transient PL characteristics in toluene (10-5 M) at room temperature under vacuum--------------------------------------------------------------------------------44 Figure 1. 9. Temperature dependent transient PL decays of doped films a) mCBP: 1.4BPy-mDTC(a) (7 wt%) and b) mCBP: 1.BP-mDTC(b) (7 wt%) ranging from 100 K to 300 K------------------------------------------------------------------------------44 Figure 1. 10. Transient PL characteristics of co-doped films (7 wt% 1.4BPy-mDTC, 1.3BPy-mDTC, or 1.2BPy-mDTC doped in mCBP host) at 300 K--------45 Figure 1. 11. Prompt and delayed Pl spectra of co-doped thin film a) mCBP: 1.4BPy-mDTC (7 wt%), b) mCBP: 1.BP-mDTC (7 wt%)----------------------------46 Figure 1. 12. Oxidization potentials of a) 1.4BPy-mDTC, b) 1.3BPy-mDTC, c) 1.2BPy-mDTC and d) 1.BP-mDTC and were measured in 10-3 M DCM. The electrode potentials were measured versus Ag/Ag+ electrode------------------------47 Figure 1. 13. Structures of the materials used in devices and schematic representation of devices 1B1-1B4-------------------------------------------------------49 Figure 1. 14. El spectra at various voltages of a) device 1B1, b) device 1B2, c) device 1B3, and d) device 1B4------------------------------------------------------------51 Figure 1. 15. The EL characteristic plots of devices 1B1-1B4: a) external quantum efficiency vs luminance, b) electroluminescent spectra, c) current density and luminance vs driving voltage, d) transient electroluminescence characteristics of devices 1B1 and 1B4-----------------------------------------------------------------------52 Figure 1. 16. a) The current efficiency vs luminance, b) power efficiency vs luminance of devices 1B1-1B4------------------------------------------------------------52 Figure 1. 17. a) EQE vs luminance and b) electroluminescence spectra of device 1B5--------------------------------------------------------------------------------------------54 Figure 1. 18. Transient electroluminescence characteristics of devices 1B2 and 1B3--------------------------------------------------------------------------------------------55   Chapter-2 Figure 2. 1. Thermally Activated Delayed Fluorescence process in OLED devices--------------------------------------------------------------------------------------------------69 Figure 2. 2. Structure (donor (D) and acceptor (A)) of the molecules 2QPM-mDC, 2QPM-mDTC and 4QPM-mDTC---------------------------------------------------------70 Figure 2. 3. Structures and molecular orbitals of 2QPM-mDC, 2QPM-mDTC and 4QPM-mDTC--------------------------------------------------------------------------------72 Figure 2. 4. Schematic representation of singlet and triplet states of 2QPM-mDTC and 4QPM-mDTC based on DFT calculation-------------------------------------------76 Figure 2. 5. The crystal structures of (a) 2.2QPM-mDC (b) 2.2QPM-mDTC and (c) 2.4QPM-mDTC-------------------------------------------------------------------------78 Figure 2. 6. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 2.2QPM-mDC---------------------------79 Figure 2. 7. (a) The thermogravimetric thermograms (TGA) and (b) the differential scanning calorimetry (DSC) of 2.2QPM-mDTC-------------------------80 Figure 2. 8. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 2.4QPM-mDTC-------------------------80 Figure 2. 9. Absorbance spectra (a) and fluorescence spectra (b) of 2.2QPM-mDC, in various solvents at RT (10-5 M)--------------------------------------------------------81 Figure 2. 10. Absorbance spectra (a) and fluorescence spectra (b) of 2.2QPM-mDTC, in various solvents at RT (10-5 M)----------------------------------------------81 Figure 2. 11. Absorbance spectra (a) and fluorescence spectra (b) of 2.4QPM-mDTC, in various solvents at RT (10-5 M)----------------------------------------------82 Figure 2. 12. Fluorescence (Flu.) spectra of 2.2QPM-mDC (a) 2.2QPM-mDTC (b) and 2.4QPM-mDTC (c) in toluene (10-5 M) solution measured at room temperature and phosphorescence (Phos.) spectra in toluene (10-5 M) measured at 77 K, respectively----------------------------------------------------------------------------------82 Figure 2. 13. Fluorescence spectra at RT and phosphorescence spectra at 77 K of the thin film of 7 wt% 2.2QPM-mDC (a), 7 wt% 2.2QPM-mDTC (b), and 7 wt% 2.4QPM-mDTC (c) doped in mCBP films (30 nm)------------------------------------84 Figure 2. 14. Natural Transition Orbitals (NTOs) of first triplet excited state for 2QPM-mDC, 2QPM-mDTC, and 4QPM-mDTC---------------------------------------87 Figure 2. 15. Temperature-dependent transient PL curves of 7 wt % (a) 2.2QPM-mDC, 2.2QPM-mDTC, (b) 2.4QPM-mDTC and (c) 2.2QPM-mDTC (various temperature) doped in mCBP films (30 nm)--------------------------------------------88 Figure 2. 16. Photoelectron spectroscopy of 2.2QPM-mDC (a), 2.2QPM-mDTC (b), and 2.4QPM-mDTC (c), measured in neat films-----------------------------------89 Figure 2. 17. Structures of the molecules used in the device, schematic representation of device, G1-G10 and energy level diagram--------------------------91 Figure 2. 18. The EL characteristic plots of device 2G1-2G6: a) Electroluminescence spectra at 8V, b) EQE vs Luminance, c) luminance and current density vs driving voltage---------------------------------------------------------94 Figure 2. 19. TADF molecules and device structures---------------------------------95 Figure 2. 20. The EL characteristic plots of device 2G7-2G9: a) Electroluminescence spectra at 8V, and measured fwhm of devices 2G7-2G9, b) EQE vs Luminance, c) Current density and Luminance vs driving voltage, d) Current and Power efficiency vs Luminance--------------------------------------------96   Chapter-3 Figure 3. 1. Structure of the molecules 3.ThX-27DTC and 3.ThXO-27DTC----109 Figure 3. 2 Molecular orbitals of 3.ThX-27DTC and 3.ThXO-27DTC-----------110 Figure 3. 3 a) The thermogravimetric thermograms (TGA) and b) The differential scanning calorimetry (DSC) of 3.ThX-27DTC----------------------------------------115 Figure 3. 4. a) The thermogravimetric thermograms (TGA) and b) The differential scanning calorimetry (DSC) of 3.ThXO-27DTC-------------------------------------115 Figure 3. 5. Absorbance spectra (a) and fluorescence spectra (b) of 3.ThX-27DTC, in various solvents at RT (10-5 M)------------------------------------------------------116 Figure 3. 6. Absorbance spectra (a) and fluorescence spectra (b) of 3.ThXO-27DTC, in various solvents at RT (10-5 M)--------------------------------------------116 Figure 3. 7. Fluorescence spectra of 3.ThX-27DTC (a) and 3.ThXO-27DTC (b) in toluene (10-5 M) solution measured at room temperature and phosphorescence spectra in toluene (10-5 M) measured at 77 K, respectively-----------------------------------------------------------------------------------------------------------------------------117 Figure 3. 8. Fluorescence spectra at RT and phosphorescence spectra at 77 K of the thin film of 7 wt% 3.ThX-27DTC (a) and 7 wt% 3.ThXO-27DTC (b) doped in mCBP films (30 nm)----------------------------------------------------------------------118 Figure 3. 9. Transient PL characteristics of 7 wt % (a) 3.ThX-27DTC and (b) 3.ThXO-27DTC doped in mCBP film (30 nm)----------------------------------------120 Figure 3. 10. Photoelectron spectroscopy of 3.ThX-27DTC (a) and 3.ThXO-27DTC (b), measured in neat films-----------------------------------------------------121 Figure 3. 11. Structures of the molecules used in the device, schematic representation of device, 3B1-3B3 and 3O1-3O3 and energy level diagram------122 Figure 3. 12. The EL characteristic plots of device 3B1-3B2 and 3O1-3O2: a) Electroluminescence spectra at 8V, b) EQE vs Luminance, c) luminance and current density vs driving voltage-------------------------------------------------------125 Figure 3. 13. TADF molecules and device structures--------------------------------126 Figure 3. 14. The EL characteristic plots of device 3B3-3O3: a) Electroluminescence spectra at 8V, and measured fwhm of devices 3B3-3O3, b) EQE vs Luminance, c) Current density and Luminance vs driving voltage, d) Current and Power efficiency vs Luminance------------------------------------------127 Chapter-4 Figure 4. 1. Structure of the molecules 4.CzA-PPO and 4.TAA-PPO-------------140 Figure 4. 2. Molecular orbitals of (a) 4.CzA-PPO and (b) 4.TAA-PPO-----------141 Figure 4. 3. The single crystal structure of 4.TAA-PPO (a) and crystal packing (b) (H are removed for clarity)---------------------------------------------------------------143 Figure 4. 4. The thermogravimetric thermograms of a) TAA-PPO and b) CzA-PPO------------------------------------------------------------------------------------------144 Figure 4. 5. Absorption and emission spectra of (a, b) 4.TAA-PPO and (c, d) 4.CzA-PPO in various solvents at room temperature---------------------------------145 Figure 4. 6. Transient PL characteristics of 4.TAA-PPO in neat film-------------147 Figure 4. 7. Oxidation potentials of 4.TAA-PPO and 4.CzA-PPO in DCM reported versus Fc/Fc+------------------------------------------------------------------------------148 Figure 4. 8. Schematic representation of device architecture and chemical structures of the organic materials used in the EL devices---------------------------149 Figure 4. 9. Electroluminescence properties of devices G1 and G2 using 4.TAA-PPO and 4.CzA-PPO, respectively: a) current density and luminance vs driving voltage; b) external quantum efficiency vs luminance; c) current efficiency vs luminance; d) electroluminescence spectra--------------------------------------------151 Figure 4. 10. The power efficiency vs luminance of devices G1 and G2---------152 Figure 4. 11. Time-resolved electroluminescence response of the G2 device measured at 545 nm with 6 V------------------------------------------------------------153 Figure 4. 12. a) Chemical structures of materials and device architecture used in the device G3, b) EQE vs Luminance (insert: EL spectra), and c) current and power efficiency vs luminance----------------------------------------------------------156

    Chapter-I (introduction)

    [1] Ono, Y.-A. Electroluminescence in Encyclopedia of Applied Physics, 1st ed. VCH, Weinheim 1993.
    [2] Destriau, G. J. Chim. Phys. 1936, 33, 857-858.
    [3] Pope, M.; Magnante, P.; kallmann, H.-P. J. Chem. Phys. 1963, 38, 2042-2043.
    [4] Tang, C.-W.; Vanslyke, S.-A. Appl. Phys. Lett. 1987, 51, 913-915.
    [5] Kitai, A. Luminescent materials and Applications. New York: John Wiley and Sons; 2008.
    [6] Adachi, C. Data book on HOMO levels of organic thin films in organic semiconductor devices, 1st ed. CMC, 2005.
    [7] Duan, L.-A.; Hou, L.-D.; Lee, T.-W.; Qiao, J.-A.; Zhang, D.-Q.; Dong, G.-F.; Wang, L.-D.; Qiu, Y. J. Mater. Chem. 2010, 20, 10946-10946.
    [8] Singh, M.; Haverinen, H.-M.; Dhagat, P.; Jabbour, G.-E. Adv. Mater. 2010, 22, 673-685.
    [9] Chang, Y.-F.; Chiu, Y.-C.; Yeh, H.-C.; Chang, H.-W.; Chen, C.-Y.; Meng, H.-F.; Lin, H.-W.; Huang, H.-L.; Chao, T.-C.; Tseng, M.-R.; Zan, H.-W.; Horng, S.-F. Org. Electron 2012, 13, 2149-2155.
    [10] Mazhari, B. Solid State Electron 2005, 49, 311-315.
    [11] Zhigang, L. Organic Light-Emitting Materials and Devices, 1st ed.; CRC Press, 2007.
    [12] Shirota, Y. J. Mater. Chem, 2005, 15, 75-93.
    [13] Setayesh, S.; Grimsdale, A.-C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E.-J.-W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946-953.
    [14] Zhu, X.-H.; Zhang, Y.; Xie, Y.-Q.; Cao, Y.; Pei, J. Macromolecules 2006, 39, 3830-3840.
    [15] Lo, S.-C.; Burn, P.-L. Chem. Rev. 2007, 107, 1097-1116.
    [16] Li, J.-Y.; Liu, D. J. Mater. Chem. 2009, 19, 7584-7591.
    [17] Gross, M.; Muller, D.-C.; Nothofer, H.-G.; Scherf, U.; Neher, D.; Brauchle, C.; Meerholz, K. Nature 2000, 405, 661-665.
    [18] Zhu, M.-R.; Yang, C.-L. Chem. Soc. Rev. 2013, 42, 4963-4976.
    [19] Huang, J.-H.; Su,J.-H.; Tian, H. J. Mater. Chem. 2012, 22, 10977-10989.
    [20] Wallace, J.-U.; Chen, S.-H. Adv. Polym. Sci. 2008, 212, 145-186.
    [21] Saragi, T.-P.-I.; Spehr, T.; Siebert, A.; Fuhrmann L.-T.; Salbeck, J. Chem. Rev. 2007, 107, 1011-1065.
    [22] Figueira D.-T.-M.; Mullen, K. Chem. Rev. 2011, 111, 7260-7314.
    [23] Shirota, Y. J. Mater. Chem. 2000, 10, 1-25.
    [24] Shirota, Y.; Kobata, T.; Noma, N. Chem. Lett. 1989, 7, 1145-1148.
    [25] Ishikawa, W.; Inada, H.; Nakano, H.; Shirota, Y. Chem. Lett. 1991, 10, 1731-1734
    [26] Inada, H.; Shirota, Y. J. Mater. Chem. 1993, 3, 319-320.
    [27] Delorme.; Perrin, F. J. Phys. Rad. Ser. 1929, 10, 177.
    [28] Lewis, N.; Lipkin.; Magel, T.-T. J. Am. Chem. Soc., 1941, 63, 3005.
    [29] Parker.; Hatchard, C. Trans. Faraday Soc. 1961, 57, 1894.
    [30] Uoyama, K.; Goushi, K.; Shizu, H.; Nomura.; Adachi, C. Nature 2012, 492, 234.
    [31] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C, 2017, 5, 2919-2926.
    [32] Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics, 2018, 12, 235–240.
    [33] Kim, J.-S.; Ho, P.-K.-H.; Greenham, N.-C.; Friends, R.-H. J. Appl. Phys. 2000, 88, 1073-1081.
    [34] Atkins, P.; Paula, D. J. Atkins' Physical Chemistry, 8th edition 2006, 494, Oxford University Press. ISBN 0-7167-8759-8.
    [35] Jabłoński., Aleksander. Nature 1933, 131, 839-840.
    [36] Alexandra, O.-C.; Gregory, D. J. Intr. Rev. Phy Chem, 2011, 30, 49-77.
    [37] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234−238.
    [38] Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330−336.
    [39] Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326−332.

    Chapter-1

    [1] Highly Efficient OLEDs with Phosphorescent Materials, ed. H. Yersin, Wiley-VCH, Weinheim, 2008.
    [2] Organic Light-Emitting Devices: Synthesis Properties and Applications, ed. K. Mu¨llen and U. Scherf, Wiley-VCH, Weinheim, 2006.
    [3] Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467-3482.
    [4] Chou, H.-H.; Chen, Y.-H.; Hsu, H.-P.; Chang, W.-H.; Chen, Y.-H.; Cheng, C.-H. Adv. Mater. 2012, 24, 5867-5871.
    [5] Lee, C. W.; Lee, J. Y. Adv. Mater. 2013, 25, 5450-5454.
    [6] Gather, M. C.; Köhnen, A.; Meerholz, K. Adv. Mater. 2011, 23, 233-248.
    [7] Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R. Adv. Mater. 2010, 22, 572-582.
    [8] Sun, N.; Wang, Q.; Zhao, Y.; Chen, Y.; Yang, D.; Zhao, F.; Chen, J.; Ma, D. Adv. Mater. 2014, 26, 1617-1621.
    [9] Schwartz, G.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Adv. Mater. 2007, 19, 3672-3676.
    [10] Zhang, D.; Cai, M.; Zhang, Y.; Zhang, D.; Duan, L. ACS Appl. Mater. Interfaces 2015, 7, 28693-28700.
    [11] Fan, C.; Zhu, L.; Liu, T.; Jiang, B.; Ma, D.; Qin, J.; Yang, C. Angew. Chem. Int. Ed. 2014, 53, 2147-2151.
    [12] Du, B.-S.; Liao, J.-L.; Huang, M.-H.; Lin, C.-H.; Lin, H.-W.; Chi, Y.; Pan, H.-A.; Fan, G.-L.; Wong, K.-T.; Lee, G.-H.; Chou, P.-T. Adv. Funct. Mater. 2012, 22, 3491-3499.
    [13] Lu, K.-Y.; Chou, H.-H.; Hsieh, C.-H.; Yang, Y.-H. O.; Tsai, H.-R.; Tsai, H.-Y.; Hsu, L.-C.; Chen, C.-Y.; Chen, I. C.; Cheng, C.-H. Adv. Mater. 2011, 23, 4933-4937.
    [14] Reineke, S.; Rosenow, T. C.; Lüssem, B.; Leo, K. Adv. Mater. 2010, 22, 3189-3193.
    [15] Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. Nature 2009, 459, 234-238.
    [16] Schwartz, G.; Reineke, S.; Rosenow, T. C.; Walzer, K.; Leo, K. Adv. Funct. Mater. 2009, 19, 1319-1333.
    [17] Wu, K. C.; Ku, P. J.; Lin, C. S.; Shih, H. T.; Wu, F. I.; Huang, M. J.; Lin, J. J.; Chen, I. C.; Cheng, C. H. Adv. Funct. Mater. 2008, 18, 67-75.
    [18] Forrest, S. R.; Baldo, M. A.; Thompson, M. E. Nature 2000, 403, 750-753.
    [19] Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, J. Y. Adv. Mater. 2015, 27, 2515-2520.
    [20] Cui, L.-S.; Xie, Y.-M.; Wang, Y.-K.; Zhong, C.; Deng, Y.-L.; Liu, X.-Y.; Jiang, Z.-Q.; Liao, L.-S. Adv. Mater. 2015, 27, 4213-4217.
    [21] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931-7958.
    [22] Sun, J. W.; Lee, J.-H.; Moon, C.-K.; Kim, K.-H.; Shin, H.; Kim, J.-J. Adv. Mater. 2014, 26, 5684-5688.
    [23] Komino, T.; Nomura, H.; Koyanagi, T.; Adachi, C. Chem. Mater. 2013, 25, 3038-3047.
    [24] Li, J.; Nakagawa, T.; MacDonald, J.; Zhang, Q.; Nomura, H.; Miyazaki, H.; Adachi, C. Adv. Mater. 2013, 25, 3319-3323.
    [25] Ward, J. S.; Nobuyasu, R. S.; Batsanov, A. S.; Data, P.; Monkman, A. P.; Dias, F. B.; Bryce, M. R. Chem. Commun. 2016, 52, 2612-2615.
    [26] Zhang, Q.; Komino, T.; Huang, S.; Matsunami, S.; Goushi, K.; Adachi, C. Adv. Funct. Mater. 2012, 22, 2327-2336.
    [27] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-Z.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C 2016, 4, 900-904.
    [28] Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Van Voorhis, T.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908-11911.
    [29] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2016, 138, 628-634.
    [30] Méhes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew. Chem. Int. Ed. 2012, 51, 11311-11315.
    [31] Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706-14709.
    [32] Wong, M. Y.; Hedley, G. J.; Xie, G.; Kölln, L. S.; Samuel, I. D. W.; Pertegás, A.; Bolink, H. J.; Zysman-Colman, E. Chem. Mater. 2015, 27, 6535-6542.
    [33] Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C.-J.; Cheng, C.-H.; Tseng, M.-R.; Yasuda, T.; Adachi, C. Chem. Commun. 2013, 49, 10385-10387.
    [34] Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18070-18081.
    [35] Zhang, Q.; Tsang, D.; Kuwabara, H.; Hatae, Y.; Li, B.; Takahashi, T.; Lee, S. Y.; Yasuda, T.; Adachi, C. Adv. Mater. 2015, 27, 2096-2100.
    [36] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234-238.
    [37] Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nature Photon. 2014, 8, 326-332.
    [38] Lee, D. R.; Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, C. W.; Lee, J. Y. Adv. Mater. 2015, 27, 5861-5867.
    [39] Cho, Y. J.; Jeon, S. K.; Chin, B. D.; Yu, E.; Lee, J. Y. Angew. Chem. Int. Ed. 2015, 54, 5201-5204.
    [40] Cho, Y. J.; Jeon, S. K.; Lee, S.-S.; Yu, E.; Lee, J. Y. Chem. Mater. 2016, 28, 5400-5405.
    [41] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C 2017, 5, 2919−2926.
    [42] Lin, N.; Qiao, J.; Duan, L.; Wang, L.; Qiu, Y. J. Phys. Chem. C 2014, 118, 7569-7578.
    [43] Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332-4353.
    [44] Zhang, Q.; Komino, T.; Huang, S.; Matsunami, S.; Goushi, K.; Adachi, C. Adv. Funct. Mater. 2012, 22, 2327-2336.
    [45] Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Adv. Mater. 2013, 25, 3707-3714.
    [46] Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nature Photon. 2012, 6, 253-258.
    [47] Lin, J.-J.; Liao, W.-S.; Huang, H.-J.; Wu, F.-I.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 485-491.
    [48] Chou, H.-H.; Cheng, C.-H. Adv. Mater. 2010, 22, 2468-2471.

    Chapter-2

    [1] Tang, C.-W.; Vanslyke, S.-A. Appl. Phys. Lett. 1987, 51, 913−915.
    [2] Chou, H.-H.; Chen, Y.-H.; Hsu, H.-P.; Chang, W.-H.; Chen, Y.H.; Cheng, C.-H. Adv. Mater. 2012, 24, 5867−5871.
    [3] Baldo, M.-A.; Thompson, M.-E.; Forrest, S.-R. Nature 2000, 403, 750−753.
    [4] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234−238.
    [5] Wong, M.-Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444−1605497.
    [6] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. ACS Appl. Mater. Interfaces 2016, 8, 27026−27034.
    [7] Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics 2018, 12, 235−240.
    [8] Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28, 2777−2781.
    [9] Zhao, B.; Miao, Y.; Wang, Z.; Wang, K.; Wang, H.; Hao, Y.; Xu, B.; Li, W. Nanophotonics 2017, 6, 1133−1140.
    [10] Shih, C.-H.; Rajamalli, P.; Wu, C.-A.; Hsieh, W.-T.; Cheng, C.H. ACS Appl. Mater. Interfaces 2015, 7, 10466−10474.
    [11] Li, M.; Liu, Y.; Duan, R.; Wei, X.; Yi, Y.; Wang, Y.; Chen, C.-F. Angew. Chem., Int. Ed. 2017, 56, 8818−8822.
    [12] Dias, F.-B.; Bourdakos, K.-N.; Jankus, V.; Moss, K.-C.; Kamtekar, K.-T.; Bhalla, V.; Santos, J.; Bryce, M.-R.; Monkman, A.P. Adv. Mater. 2013, 25, 3707−3714.
    [13] Seo, J.-A.; Im, Y.; Han, S.-H.; Lee, C.-W.; Lee, J.-Y. ACS Appl. Mater. Interfaces 2017, 9, 37864−37872.
    [14] Wang, K.; Zheng, C.-J.; Liu, W.; Liang, K.; Shi, Y.-Z.; Tao, S.L.; Lee, C.-S.; Ou, X.-M.; Zhang, X.-H. Adv. Mater. 2017, 29, 1701476−1701484.
    [15] Chen, X.-K.; Tsuchiya, Y.; Ishikawa, Y.; Zhong, C.; Adachi, C.; Brédas, J.-L. Adv. Mater. 2017, 29, 1702767−1702774.
    [16] Rajamalli, P.; Senthilkumar, N.; Huang, P.-Y.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2017, 139, 10948−10951.
    [17] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2016, 138, 628−634.
    [18] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C, 2017, 5, 2919−2926.
    [19] Thangaraji, V.; Rajamalli, P.; Jayakumar, J.; Huang, M.-J.; Chen, Y.-W.; Cheng, C.-H. ACS Appl. Mater. Interfaces, 2019, 11, 17128−17133.
    (20) Dias, F.-B.; Bourdakos, K.-N.; Jankus, V.; Moss, K.-C.; Kamtekar, K.-T.; Bhalla, V.; Santos, J.; Bryce, M.-R.; Monkman, A.-P. Adv. Mater. 2013, 25, 3707–3714.
    [21] Lin, N.; Qiao, J.; Duan, L.; Wang, L.; Qiu, Y. J. Phys. Chem. C, 2014, 118, 7569−7578.
    [22] Hong, Y.; Lam, J. W.-Y.; Tang, B.-Z. Chem. Com-mun. 2009, 4332–4353.
    [23] Wang, L.; Zhu, L.; Li, L.; Caoa, D. RSC Adv., 2016, 6, 55182–55193.
    [24] Zhua, L.; Zhao, Y. J. Mater. Chem. C, 2013, 1, 1059–1065.
    [25] Cui, L.-S.; Nomura, H.; Geng, Y.; Kim, U. K.-J.; Nakanotani, H.; Adachi, C. Angew .Chem. Int.Ed. 2017, 56, 1571–1575.
    [26] Lin, J.-J.; Liao, W.-S.; Huang, H.-J.; Wu, F.-I.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 485-491.
    [27] Chen, J.-X.; Liu, W.; Zheng, C.-J.; Wang, K.; Liang, K.; Shi, Y.-Z.; Ou, X.-M.; Zhang, X.-H. ACS Appl. Mater. Interfaces, 2017, 9, 8848−8854.
    [28] Yu, L.; Wu, Z.; Zhong, C.; Xie, G.; Wu, K.; Ma, D.; Yang, C. Dyes and Pigments, 2017, 141, 325-332.
    [29] Chen, D.-Y.; Liu, W.; Zheng, C.-J.; Wang, K.; Li, F.; Tao, S.-L.; Ou, X.-M.; Zhang, X.-H. ACS Appl. Mater. Interfaces, 2016, 8, 16791−16798.
    [30] Xie, G.; Li, X.; Chen, D.; Wang, Z.; Cai, X.; Chen, D.; Li, Y.; Liu, K.; Cao, Y.; Su, S.-J. Adv. Mater. 2016, 28, 181–187.

    Chapter-3

    [1] Tang, C.-W.; VanSlyke, S. Appl. Phys. Lett. 1987, 51,913.
    [2] Zhu, M.-R.; Yang, C.-L. Chem. Soc. Rev. 2013, 42, 49636.
    [3] Liu, M.; Li, X.-L.; Chen, D.-C.; Xie, Z.; Cai, X.-Y.; Xie, G.-Z.; Liu, K.-k.; Tang, J.; Su, S.-J.; Cao, Y. Adv. Funct. Mater. 2015, 25, 5190.
    [4] Baldo, M.-A.; O’Brien, D.-F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, m.-E.; Forrest, S.-R. Nature 1998, 395, 151.
    [5] Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Leo, K. Nature 2009, 459, 234.
    [6] Zhang, Q.-S.; Li, J.; Shizu, K.; Huang, S.-P.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706.
    [7] Liu, M.; Seino, Y.; Chen, D.-C.; Inomata, S.; Su, S.-J.; Sasabe, H.; Kido, J.; Chem. Commun. 2015, 51, 16353.
    [8] Chen, D.; Xie, G.; Cai, X.; Liu, M.; Cao, Y.; Su, S.-J. Adv. Mater. 2016, 28, 239.
    [9] Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253.
    [10] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492 (7428), 234−238.
    [11] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C 2017, 5, 2919−2926.
    [12] Thangaraji, V.; Rajamalli, P.; Jayakumar, J.; Huang, M.-J.; Chen, Y.-W.; Cheng, C.-H. ACS Appl. Mater. Interfaces, 2019, 11, 17128−17133.
    [13] Ishijima, S.; Higashi, M.; Yamaguchi, H. J. Phys. Chem. 1994, 98, 10432.
    [14] Ley, C.; Morlet-Savary, F.; Jacques, P.; Fouassier, J.-P. Chem. Phys. 2000, 255, 335.
    [15] Turek, A. M.; Krishnamoorthy, G.; Phipps, K.; Saltiel, J. J. Phys. Chem. A 2002, 106, 6044−6052.
    [16] Reineke, S.; Baldo, M.-A. Sci. Rep. 2014, 4, 3797.
    [17] Wang, Z.; Li, Y.; Cai, X.; Chen, D.; Xie, G.; Liu, K.-K.; Wu, Y.-C.; Lo, C.-C.; Lien, A.; Cao, Y.; Su, S.-J. ACS Appl. Mater. Interfaces 2016, 8, 8627−8636.
    [18] Li, Y.; Li, X.-L.; Chen, D.; Cai, X.; Xie, G.; He, z.; Wu, Y.-C.; Lien, A.; Cao, Y.; Su, S.-J. Adv. Funct. Mater. 2016, 26, 6904–6912.
    [19] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2016, 138, 628-634.
    [20] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. ACS Appl. Mater. Interfaces 2016, 8, 27026−27034.
    [21] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C, 2017, 5, 2919−2926.
    [22] Hong, Y.; Lam, J. W.-Y.; Tang, B.-Z. Chem. Com-mun. 2009, 4332–4353.
    [23] Wang, L.; Zhu, L.; Li, L.; Caoa, D. RSC Adv., 2016, 6, 55182–55193.
    [24] Zhua, L.; Zhao, Y. J. Mater. Chem. C, 2013, 1, 1059–1065.
    [25] Lin, J.-J.; Liao, W.-S.; Huang, H.-J.; Wu, F.-I.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 485-491.
    [26] Rajamalli, P.; Senthilkumar, N.; Huang, P.-Y.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2017, 139, 10948−10951.
    [27] Godumala, M.; Choi, S.; Cho, M.-J.; Choi, D.-H. J. Mater. Chem. C, 2016, 4, 11355—11381.
    [28] Yu, L.; Wu, Z.; Zhong, C.; Xie, G.; Wu, K.; Ma, D.; Yang, C. Dyes and Pigments, 2017, 141, 325-332.
    [29] Chen, D.-Y.; Liu, W.; Zheng, C.-J.; Wang, K.; Li, F.; Tao, S.-L.; Ou, X.-M.; Zhang, X.-H. ACS Appl. Mater. Interfaces, 2016, 8, 16791−16798.
    [30] Xie, G.; Li, X.; Chen, D.; Wang, Z.; Cai, X.; Chen, D.; Li, Y.; Liu, K.; Cao, Y.; Su, S.-J. Adv. Mater. 2016, 28, 181–187.

    Chapter-4

    [1] Li, Z.; Meng, H. Organic Light-Emitting Materials and Devices, Taylor & Francis, New York, 2007.
    [2] So, F. Organic Electronic, CRC press, New York, 2010.
    [3] Nalwa, H.-S.; Rohwer, L.-S. Handbook of Luminescence, Display Materials and Device, American Scientific Publishers, USA, 2003.
    [4] Tang, C.-W.; Van Slyke, S.-A. Appl. Phys. Lett. 1987, 51, 913.
    [5] Burroughes, J. -H.; Bradley, D.-D.-C.; Broun, A.-R.; Marks, R.-N.; Mackay, K.; Friend, R.-H.; Burn, P.-L.; Holmes, A.-B. Nature 1990, 347, 539.
    [6] Shen, Z.; Burrows, P.-B.; Bulovic, V.; Forrest, S.-R.; Thompson, M.-E. Science 1996, 276, 2009.
    [7] Kim, Y.-H.; Jeong, H.-C.; Kim, S.-H.; Yang, K.; Kwon, S.-K. Adv. Funct. Mater. 2005, 15, 1799.
    [8] Lin, S.-H.; Wu, F.-I.; Tsai, H.-Y.; Chou, P.-Y.; Chou, H.-H.; Cheng, C.-H.; Liu, R.-S. J. Mater. Chem. 2011, 21, 8122.
    [9] Chen, Y.-H.; Chou, H.-H.; Su, T.-H.; Chou, P.-Y.; Wu, F.-I.; Cheng, C.-H. Chem. Commun. 2011, 47, 8865.
    [10] Wu, K.-C.; Ku, P.-J.; Lin, C.-S.; Shih, H.-T.; Wu, F.-I.; Huang, M.-J.; Lin, J.-J.; Chen, I-C.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 67.
    [11] Yersin, H.; and Finkenzeller, W. -J. Ch. 1, Wiley-VCH, 2008.
    [12] Lu, K.-Y.; Chou, H.-H.; Hsieh, C.-H.; Yang, Y.-H. O.; Tsai, H.-R.; Tsai, H.-Y.; Hsu, L.-C.; Chen, C.-Y.; Chen, I.-C.; Cheng, C.-H. Adv. Mater. 2011, 23, 4933.
    [13] Baldo, M.-A.; O’Brien, D.-F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S.-R. Nature, 1998, 395, 151.
    [14] Baldo, M.-A.; Thompson, M.-E.; Forrest, S.-R. Nature, 2000, 403, 750.
    [15] Xiao, L.; Su, S.-J.; Agata, Y.; Lan, H.; Kido, J. Adv. Mater. 2009, 21, 1271.
    [16] Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
    [17] Monkman, A.-P. ISRN Mater. Sci. 2013, ID 670130.
    [18] Cui, X.; Zhao, J.; Zhou, Y.; Ma, J.; Zhao, Y. J. Am. Chem. Soc. 2014, 136, 9256.
    [19] Ganzorig, C.; Fujihira, M. Appl. Phys. Lett. 2002, 81, 3137.
    [20] Simon, Y.-C.; Weder, C. J. Mater. Chem. 2012, 22, 20817.
    [21] Sinha, S.; Monkman, A.-P. Appl. Phys. Lett. 2003, 82, 4651.
    [22] Jankus, V.; Chiang, C.-J.; Dias, F.; Monkman, A.-P. Adv. Mater. 2013, 25, 1455.
    [23] Rajamalli, P.; Senthilkumar, N.; Huang, P.-Y.; Ren-Wu, C.-C.; Lin, H. W.; Cheng, C.-H. J. Am. Chem. Soc. 2017, 139, 10948.
    [24] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-Z.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C 2016, 4, 900.
    [25] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
    [26] Wong, M.-Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
    [27] Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nature Photon. 2014, 8, 326.
    [28] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. ACS Appl. Mater. Interfaces, 2016, 8, 27026.
    [29] Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Chem. Commun. 2012, 48, 9580.
    [30] Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C.-J.; Cheng, C.-H.; Tseng, M.-R.; Yasuda, T.; Adachi, C. Chem. Commun. 2013, 49, 10385.
    [31] X.-K.; Chen, Z.; Zheng, C.-J.; Liu, C.-L.; Lee, C.-S.; Li, F.; Ou, X.-M.; Zhang, X.-H. Adv. Mater. 2015, 27, 2378.
    [32] Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin, W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H. Chem. Commun. 2014, 50, 6869.
    [33] Luo, Y.; Aziz, H. Adv. Funct. Mater. 2010, 20, 1285.
    [34] Shao, M.; Yan, L.; Li, M.; Ilia, I.; Hu, B. J. Mater. Chem. C 2013, 1, 1330.
    [35] Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B.; Ma, Y. Adv. Funct. Mater. 2014, 24, 1609.
    [36] Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Angew. Chem. Int. Ed. 2014, 53, 2119.
    [37] Murawski, C.; Leo, K.; Gather, M.-C. Adv. Mater. 2013, 25, 6801.
    [38] Kepler, R.-G.; Caris, J. C.; Avakian, P.; Abramson, E. Phys. Rev. Lett. 1963, 10, 400.
    [39] Nickel, B.; Wilhelm, H. E.; Ruth, A.-A. Chem. Phys. 1994, 188, 267.
    [40] Chiang, C.-J.; Kimyonok, A.; Etherington, M. K.; Griffiths, G. C.; Jankus, V.; Turksoy, F.; Monkman, A.-P. Adv. Funct. Mater. 2013, 23, 739.
    [41] Mu, G.; Zhuang, S.; Zhang, W.; Wang, Y.; Wang, B.; Wang, L.; Zhu, X. Org. Electron. 2015, 21, 9.
    [42] Jones, R. N. Chem. Rev., 1947, 41, 353.
    [43] Gan, S.; Luo, W.; He, B.; Chen, L.; Nie, H.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 3705.
    [44] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Mater. Chem. C 2017, 5, 2919.
    [45] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2016, 138, 628.
    [46] Lin, J.-J.; Liao, W.-S.; Huang, H.-J.; Wu, F.-I.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 485-491.
    [47] Li, W.; Pan, Y.; Yao, L.; Liu, H.; Zhang, S.; Wang, C.; Shen, F.; Lu, P.; Yang, B.; Ma, Y. Adv. Optical Mater. 2014, 2, 892.
    [48] Shih, C.-H.; Rajamalli, P.; Wu, C.-A.; Chiu, M.-J.; Chu, L.-K.; Cheng, C.-H. J. Mater. Chem. C 2015, 3, 1491.
    [49] Zhang, D.; Zhao, C.; Zhang, Y.; Song, X.; Wei, P.; Cai, M.; Duan, L. ACS Appl. Mater. Interfaces 2017, 9, 4769.
    [50] Yu, M.-X.; Duan, J.-P.; Lin, C.-H.; Cheng, C.-H.; Tao, Y.-T. Chem. Mater. 2002, 14, 3958.
    [51] Sung, M. J.; Chubachi, H.; Sato, R.; Shin, M.-K.; Kwon, S.-K.; Pu, Y.-J.; Kim, Y.-H. J. Mater. Chem. C 2017, 5, 1090.
    [52] Nowy, S.; Krummacher, B. C.; Frischeisen, J.; Reinke, N. A.; Brütting, W. J. Appl. Phys. 2008, 104, 123109.
    [53] Nakanotani, H.; Higuchi, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. Nat. Commun. 2014, 5, 4016.

    QR CODE