簡易檢索 / 詳目顯示

研究生: 黃大維
Huang, Ta-Wei
論文名稱: 協同式自適應巡航控制系統的序列重組自動化
Vehicle Sequence Reordering with Cooperative Adaptive Cruise Control
指導教授: 何宗易
Ho, Tsung-Yi
口試委員: 李淑敏
Li, Shu-Min
林忠緯
Lin, Chung-Wei
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 33
中文關鍵詞: 巡航控制系統序列重組車輛列隊行駛
外文關鍵詞: Cooperative Adaptive Cruise Control, Sequence Reordering, Vehicle platooning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自動化高速公路系統中,車輛列隊行駛可以增加交通吞吐量和能源使用效率。協同式自適應巡航控制系統允許車輛之間相互通信和車輛列隊行駛。在車輛列隊行駛時,其中一輛車會以固定的距離或固定的時間間隔跟隨前面的另一輛車。目前大多數研究都假設車輛列隊行駛中所有車輛的類型和能力是一樣的,而且兩個車輛之間的距離是固定的距離。但是,車輛之間的距離應該與車輛能力有關。在這篇論文中,我們考慮不同車輛之間的煞車能力係數,通過重新排序使車輛列隊行駛的總長度最小化。因此,我們制定車輛序列的重新排序問題和提出啟發式演算法來解決此問題,同時嘗試最小化總體的需要時間。


    In Automated Highway System (AHS), grouping vehicles into platoons can increase
    the trac throughput and energy eciency. With Cooperative Adaptive Cruise Control
    (CACC) system, vehicles are allowed to communicated and cooperate with each other to
    form platoons, where one vehicle follows another with a predefined spacing or time gap.
    Most studies assumed that type and capabilities of all the vehicles in a platoon are homogeneous
    and the spacing between two vehicles is a constant spacing. However, spacing
    between vehicles should be related to vehicles capabilities. In this thesis, we take into
    account braking factor of di erent vehicles in order to minimize platoon length by reordering
    platoon sequence. Therefore, we formulate platoon sequence reordering problem and
    propose a heuristic algorithm while minimizing the total operation time.

    Acknowledgement i Abstract ii 1 Introduction 1 1.1 Benefits of Vehicle Platooning . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Adaptive Cruise Control (ACC) and Vehicle-to-Vehicle (V2V) . . . . . . . 2 1.3 Cooperative Adaptive Cruise Control (CACC) . . . . . . . . . . . . . . . . 2 1.4 Spacing Policy Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Related Work 5 2.1 Platoon Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Sequence Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Preliminaries 10 3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Sequence Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Change Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Move Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Problem Formulation 15 4.1 Permutation Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Methodology 18 5.1 Enumeration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Clique-based Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3 Partition-Merge Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Experimental Results 27 6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 Conclusion 30 References 31

    [1] B. Van Arem, C. J. Van Driel, and R. Visser, “The impact of cooperative adaptive
    cruise control on trac-flow characteristics,” IEEE Transactions on Intelligent Transportation
    Systems, vol. 7, no. 4, pp. 429–436, 2006.
    [2] M. Michaelian and F. Browand, “Field experiments demonstrate fuel savings for
    close-following,” 2000.
    [3] R. Rajamani and S. E. Shladover, “An experimental comparative study of autonomous
    and co-operative vehicle-follower control systems,” Transportation Research Part C:
    Emerging Technologies, vol. 9, no. 1, pp. 15–31, 2001.
    [4] T. Taleb, A. Benslimane, and K. B. Letaief, “Toward an e ective risk-conscious and
    collaborative vehicular collision avoidance system,” IEEE Transactions on Vehicular
    Technology, vol. 59, no. 3, pp. 1474–1486, 2010.
    [5] F. Bai and B. Krishnamachari, “Exploiting the wisdom of the crowd: localized, distributed
    information-centric vanets [topics in automotive networking],” IEEE Communications
    Magazine, vol. 48, no. 5, 2010.
    [6] M. di Bernardo, A. Salvi, and S. Santini, “Distributed consensus strategy for platooning
    of vehicles in the presence of time-varying heterogeneous communication delays,”IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 1, pp. 102–112,
    2015.
    [7] F. Bu, H.-S. Tan, and J. Huang, “Design and field testing of a cooperative adaptive
    cruise control system,” in American Control Conference (ACC), pp. 4616–4621,
    IEEE, 2010.
    [8] G. Naus, R. Vugts, J. Ploeg, R. van de Molengraft, and M. Steinbuch, “Cooperative
    adaptive cruise control, design and experiments,” in American Control Conference
    (ACC), pp. 6145–6150, IEEE, 2010.
    [9] S. E. Shladover, C. Nowakowski, X.-Y. Lu, and R. Ferlis, “Cooperative adaptive
    cruise control: Definitions and operating concepts,” Transportation Research Record:
    Journal of the Transportation Research Board, no. 2489, pp. 145–152, 2015.
    [10] V. Milan´es, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura,
    “Cooperative adaptive cruise control in real trac situations,” IEEE Transactions
    on Intelligent Transportation Systems, vol. 15, no. 1, pp. 296–305, 2014.
    [11] Z. Wang, G. Wu, and M. J. Barth, “Developing a distributed consensus-based cooperative
    adaptive cruise control system for heterogeneous vehicles with predecessor
    following topology,” Journal of Advanced Transportation, 2017.
    [12] M. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, and D. Ghosal, “Platoon management
    with cooperative adaptive cruise control enabled by vanet,” Vehicular communications,
    vol. 2, no. 2, pp. 110–123, 2015.
    [13] E. S. Kazerooni and J. Ploeg, “Interaction protocols for cooperative merging and lane
    reduction scenarios,” in 18th International IEEE Conference on Intelligent Transportation
    Systems (ITSC), pp. 1964–1970, 2015.
    [14] R. Hall and C. Chin, “Vehicle sorting for platoon formation: Impacts on highway entry
    and throughput,” Transportation Research Part C: Emerging Technologies, vol. 13,
    no. 5-6, pp. 405–420, 2005.
    [15] P. Hao, Z. Wang, G. Wu, K. Boriboonsomsin, and M. Barth, “Intra-platoon vehicle
    sequence optimization for eco-cooperative adaptive cruise control,” in Proceedings
    of the 20th International IEEE Conference on Intelligent Transportation Systems
    (ITSC’17), 2017.
    [16] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network
    partitions,” in 19th Conference on Design Automation, pp. 175–181, IEEE, 1982.
    [17] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transactions on
    automatic control, vol. 38, no. 2, pp. 195–207, 1993.
    33

    QR CODE