簡易檢索 / 詳目顯示

研究生: 蔡鴻彬
論文名稱: 服務供應商之模型建立與績效表現之研究-以台灣便利商店公司為例
Service Company Modeling and Performance Measurement with A Taiwan Convenience Store Case Study
指導教授: 邱銘傳
口試委員: 王小璠
洪一峯
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 服務供應商供應鏈模型服務績效評估粒子群演算法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以往的供應鏈研究中,主要是探討產品在供應鏈中的流動時產品相關物流設施的最佳化,最終目標多為替企業賺取最大的利潤。由於服務與產品迥異的特性,當供應鏈的研究主體由產品轉為服務時,在架構供應鏈、績效評估上無法完全應用產品供應鏈相關方法,必須進行調整與修改。其中產品與服務最大的差別在於服務主要產生於接觸與互動的過程,因此完整的服務供應鏈應該囊括顧客接受服務的過程,否則無法體現出服務導向供應鏈與產品導向供應鏈的差異。此外,以往服務供應鏈的研究中,多以概念式、要點條列的形式描述這部分的差異以及該如何執行與改善。對於決策者而言,如能將決策的要素數值化並透過模型的計算,明確的給予具體的改善方案將更具效益。本研究為了體現兩種供應鏈不同的特性並克服決策方案不夠具體的問題,將透過數值化的方式發展一套服務提供商的配置模型並給予建議。本方法首先整理供應鏈研究相關文獻,在考慮服務的特性後,選擇適合的指標作為評估服務的依據。接著,本研究嘗試將顧客行為利用數學模型模擬並找出服務型企業如何與顧客以及其供應商的互動過程,進而建構出完整的服務供應鏈。此模型的特點為考慮顧客在供應鏈中接受服務的過程,體現了服務供應鏈與產品導向供應鏈不同之處。最後,利用粒子群演算法進行模型的最佳化以得到最佳的配置使目標企業可以賺取最大的利潤。並透過敏感度分析,找出其中影響企業利潤的重要因子以及因子的影響性。


    英文摘要 III 中文摘要 V 目錄 VI 圖目錄 VII 1 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究問題 2 1.4 研究架構 3 2 文獻回顧 4 2.1 供應鏈(Supply Chain) 4 2.2 供應鏈架構與結構 4 2.3 供應鏈分類 6 2.3.1 產品供應鏈(Product-Oriented Supply Chain) 6 2.3.2 服務供應鏈(Service-Oriented Supply Chain) 9 2.3.3 績效指標與衡量方法 13 2.3.4 小結 16 2.4 總結 18 3 研究方法與架構 19 3.1 問題描述 20 3.2 模型架構 22 3.2.1 供應端建構 23 3.2.2 需求端建構 23 3.2.3 兩端整合 24 3.3 服務提供商模型 25 3.3.1 定義標誌(Notation)意義與相關參數(Parameter) 25 3.3.2 模型關係描述 27 3.3.2.1 等候理論相關方程式 30 3.3.3 模型建立 35 3.4 求解方法 39 3.4.1 粒子群演算法簡介 39 3.4.2 粒子初始化 41 3.4.3 計算適應值 42 3.4.4 更新粒子 42 3.4.5 驗證模型 43 4 研究案例分析與討論 46 4.1 案例公司介紹 46 4.2 案例資料與參數設定 48 4.3 結果 52 4.4 敏感度分析 57 4.4.1 服務成本 V.S.利潤 57 4.4.2 滿意度權重 V.S.利潤 59 4.4.3 銷售利潤率 V.S.利潤 62 4.4.4 小結 63 4.5 討論 63 4.5.1 貢獻 64 4.5.2 限制 66 5 結論 67 5.1 結論與貢獻 67 5.2 後續研究與建議 68 參考文獻 69 附錄 79

    1. Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European journal of operational research, 196(1), 1-20.
    2. Akkermans, H., & Vos, B. (2003). Amplification in service supply chains: an exploratory case study from the telecom industry. Production and Operations Management, 12(2), 204-223.
    3. Angulo, A., Nachtmann, H., & Waller, M. A. (2004). Supply chain information sharing in a vendor managed inventory partnership. Journal of business logistics, 25(1), 101-120.
    4. Aviv, Y. (2001). The effect of collaborative forecasting on supply chain performance. Management science, 47(10), 1326-1343.
    5. Arlbjørn, J. S., Freytag, P. V., & de Haas, H. (2011). Service supply chain management: A survey of lean application in the municipal sector. International Journal of Physical Distribution & Logistics Management, 41(3), 277-295.
    6. Azaron, A., Brown, K., Tarim, S., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International journal of production economics, 116(1), 129-138.
    7. Badole, C. M., Jain, D. R., Rathore, D. A., & Nepal, D. B. (2013). Research and Opportunities in Supply Chain Modeling: A Review. International Journal of Supply Chain Management, 1(3).
    8. Baltacioglu, T., Ada, E., Kaplan, M. D., Yurt And, O., & Cem Kaplan, Y. (2007). A new framework for service supply chains. The Service Industries Journal, 27(2), 105-124.
    9. Beamon, B. M. (1998). Supply chain design and analysis::: Models and methods. International journal of production economics, 55(3), 281-294.
    10. Beamon, B. M. (1999). Measuring supply chain performance. International journal of operations & production management, 19(3), 275-292.
    11. Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing: an international journal, 8(2), 239-287.
    12. Bielen, F., & Demoulin, N. (2007). Waiting time influence on the satisfaction-loyalty relationship in services. Managing Service Quality, 17(2), 174-193.
    13. Bruce, M., Daly, L., & Towers, N. (2004). Lean or agile: a solution for supply chain management in the textiles and clothing industry? International journal of operations & production management, 24(2), 151-170.
    14. Cai, J., Wang, L., Han, Y., Zhou, G., & Huang, W. (2010). Advance order strategies: Effects on competition structure in a two-echelon supply chain. Applied Mathematical Modelling, 34(9), 2465-2476.
    15. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
    16. Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6), 1131-1144.
    17. Cho, D. W., Lee, Y. H., Ahn, S. H., & Hwang, M. K. (2012). A framework for measuring the performance of service supply chain management. Computers & Industrial Engineering, 62(3), 801-818.
    18. Christopher, M., Lowson, R., & Peck, H. (2004). Creating agile supply chains in the fashion industry. International Journal of Retail & Distribution Management, 32(8), 367-376.
    19. Clerc, M. (1999). The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 3). IEEE.
    20. Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. Evolutionary Computation, IEEE Transactions on, 8(3), 256-279.
    21. Cook, J., DeBree, K., & Feroleto, A. (2001). From raw materials to customers: supply chain management in the service industry.
    22. Croxton, K. L., Garcia-Dastugue, S. J., Lambert, D. M., & Rogers, D. S. (2001). The supply chain management processes. International Journal of Logistics Management, 12(2), 13-36.
    23. De Waart, D., & Kemper, S. (2004). Five steps to service supply chain excellence. Supply Chain Management Review, 8(1), 28-35.
    24. Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. Paper presented at the Evolutionary Computation, 2000. Proceedings of the 2000 Congress on.
    25. Ellram, L. M., Tate, W. L., & Billington, C. (2004). Understanding and managing the services supply chain. Journal of Supply Chain Management, 40(4), 17-32.
    26. Feng, B., Fan, Z.-P., & Li, Y. (2011). A decision method for supplier selection in multi-service outsourcing. International journal of production economics, 132(2), 240-250.
    27. Fitzgerald, L, Johnston, R, Brignall, TJ, Silvestro, R, & Voss, C. (1991). Performance Measurement in Service Businesses. Chartered Institute of Management Accountants (CIMA), London.
    28. Giannakis, M. (2011). Management of service supply chains with a service-oriented reference model: the case of management consulting. Supply Chain Management: An International Journal, 16(5), 346-361.
    29. Gopal, P., & Thakkar, J. (2012). A review on supply chain performance measures and metrics: 2000-2011. International Journal of Productivity and Performance Management, 61(5), 518-547.
    30. Gou, J., Shen, G., & Chai, R. (2013). Model of service-oriented catering supply chain performance evaluation. Journal of Industrial Engineering & Management, 6(1).
    31. Gunasekaran, A., & Ngai, E. W. (2009). Modeling and analysis of build-to-order supply chains. European journal of operational research, 195(2), 319-334.
    32. Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International journal of production economics, 87(3), 333-347.
    33. Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International journal of operations & production management, 21(1/2), 71-87.
    34. HershM.Seymour. (2009). Chain of command: HarperCollins. E-books
    35. Hallowell, R. (1996). The relationships of customer satisfaction, customer loyalty, and profitability: an empirical study. International journal of service industry management, 7(4), 27-42.
    36. Huan, S. H., Sheoran, S. K., & Wang, G. (2004). A review and analysis of supply chain operations reference (SCOR) model. Supply Chain Management: An International Journal, 9(1), 23-29.
    37. Huang, S. H., Uppal, M., & Shi, J. (2002). A product driven approach to manufacturing supply chain selection. Supply Chain Management: An International Journal, 7(4), 189-199.
    38. Huang, Y., Qiu, Z., & Liu, Q. (2008, September). Supply chain network design based on fuzzy neural network and PSO. In Automation and Logistics, 2008. ICAL 2008. IEEE International Conference on (pp. 2189-2193). IEEE.
    39. Huang, H., Sethi, S. P., & Yan, H. (2005). Purchase contract management with demand forecast updates. IIE Transactions, 37(8), 775-785.
    40. Jeong, B., Jung, H.-S., & Park, N.-K. (2002). A computerized causal forecasting system using genetic algorithms in supply chain management. Journal of Systems and Software, 60(3), 223-237.
    41. Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. InProceedings of IEEE international conference on neural networks (Vol. 4, No. 2, pp. 1942-1948).
    42. Lalmazloumian, M., & Wong, K. Y. (2012, July). A review of modelling approaches for supply chain planning under uncertainty. In Service Systems and Service Management (ICSSSM), 2012 9th International Conference on (pp. 197-203). IEEE.
    43. Lambert, D. M., & Cooper, M. C. (2000). Issues in supply chain management. Industrial marketing management, 29(1), 65-83.
    44. Liao, C.-J., Tseng, C.-T., & Luarn, P. (2007). A discrete version of particle swarm optimization for flowshop scheduling problems. Computers & Operations Research, 34(10), 3099-3111.
    45. Liu, R., Kumar, A., & Van Der Aalst, W. (2007). A formal modeling approach for supply chain event management. Decision Support Systems, 43(3), 761-778.
    46. Malik, M. E., Ghafoor, M. M., & Iqbal, H. K. (2012). Impact of Brand Image, Service Quality and price on customer satisfaction in Pakistan Telecommunication sector. International journal of business and social science, 3(23), 123-129.
    47. Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business logistics, 22(2), 1-25.
    48. Meyera, M. H., & DeToreb, A. (2001). Perspective: Creating a platform‐based approach for developing new services. Journal of Product Innovation Management, 18(3), 188-204.
    49. Min, H., & Zhou, G. (2002). Supply chain modeling: past, present and future. Computers & Industrial Engineering, 43(1), 231-249.
    50. Neely, A. D., Adams, C., & Kennerley, M. (2002). The performance prism: The scorecard for measuring and managing business success: Prentice Hall Financial Times, London
    51. Pierreval, H., Bruniaux, R., & Caux, C. (2007). A continuous simulation approach for supply chains in the automotive industry. Simulation Modelling Practice and Theory, 15(2), 185-198.
    52. Qian, Y., Chen, J., Miao, L., & Zhang, J. (2012). Information sharing in a competitive supply chain with capacity constraint. Flexible Services and Manufacturing Journal, 24(4), 549-574.
    53. Sadigh, A. N., Fallah, H., & Nahavandi, N. (2013). A multi-objective supply chain model integrated with location of distribution centers and supplier selection decisions. The International Journal of Advanced Manufacturing Technology, 69(1-4), 225-235.
    54. Sahin, F., Powell Robinson, E., & Gao, L.-L. (2008). Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain. International journal of production economics, 115(2), 528-541.
    55. Sánchez, A. M., & Pérez, M. P. (2005). Supply chain flexibility and firm performance: a conceptual model and empirical study in the automotive industry. International journal of operations & production management, 25(7), 681-700.
    56. Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management science, 50(2), 239-252.
    57. Sengupta, K., Heiser, D. R., & Cook, L. S. (2006). Manufacturing and service supply chain performance: a comparative analysis. Journal of Supply Chain Management, 42(4), 4-15.
    58. Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54(4), 1513-1520.
    59. Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on (pp. 69-73). IEEE.
    60. Springer, M., & Kim, I. (2010). Managing the order pipeline to reduce supply chain volatility. European journal of operational research, 203(2), 380-392.
    61. Tan, K. C. (2001). A framework of supply chain management literature. European Journal of Purchasing & Supply Management, 7(1), 39-48.
    62. Tsiakis, P., Shah, N., & Pantelides, C. C. (2001). Design of multi-echelon supply chain networks under demand uncertainty. Industrial & Engineering Chemistry Research, 40(16), 3585-3604.
    63. Wang, G., Huang, S. H., & Dismukes, J. P. (2004). Product-driven supply chain selection using integrated multi-criteria decision-making methodology. International journal of production economics, 91(1), 1-15.
    64. Wang, H. (2009). A two-phase ant colony algorithm for multi-echelon defective supply chain network design. European journal of operational research, 192(1), 243-252.
    65. Wang, H.-F., & Hsu, H.-W. (2010). A closed-loop logistic model with a spanning-tree based genetic algorithm. Computers & Operations Research, 37(2), 376-389.
    66. Wang, H.-F., & Hsu, H.-W. (2010). Resolution of an uncertain closed-loop logistics model: An application to fuzzy linear programs with risk analysis. Journal of Environmental Management, 91(11), 2148-2162.
    67. Wang, H.-F., & Huang, Y.-S. (2013). A two-stage robust programming approach to demand-driven disassembly planning for a closed-loop supply chain system. International Journal of Production Research, 51(8), 2414-2432.
    68. Wang, X., Chan, H. K., Yee, R. W., & Diaz-Rainey, I. (2012). A two-stage fuzzy-AHP model for risk assessment of implementing green initiatives in the fashion supply chain. International journal of production economics, 135(2), 595-606.
    69. Wu, D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection. International journal of production economics, 114(2), 646-655.
    70. Wu, C., & Barnes, D. (2010). Formulating partner selection criteria for agile supply chains: A Dempster–Shafer belief acceptability optimisation approach. International journal of production economics, 125(2), 284-293.
    71. Xiao, T., & Yang, D. (2009). Risk sharing and information revelation mechanism of a one-manufacturer and one-retailer supply chain facing an integrated competitor. European journal of operational research, 196(3), 1076-1085.
    72. Xue, L., Ray, G., & Sambamurthy, V. (2013). The impact of supply-side electronic integration on customer service performance. Journal of Operations Management, 31(6), 363-375.
    73. Yasin, M. M., & Gomes, C. F. (2010). Performance management in service operational settings: a selective literature examination. Benchmarking: An International Journal, 17(2), 214-231.
    74. Yu, P.-L., & Leitmann, G. (1974). Compromise solutions, domination structures, and Salukvadze's solution. Journal of Optimization Theory and Applications, 13(3), 362-378.
    75. You, F., & Grossmann, I. E. (2008). Design of responsive supply chains under demand uncertainty. Computers & Chemical Engineering, 32(12), 3090-3111.
    76. Zhu, K.-J., Jing, Y., & Chang, D.-Y. (1999). A discussion on extent analysis method and applications of fuzzy AHP. European journal of operational research, 116(2), 450-456.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE