研究生: |
曾中廷 Chung-Ting Tseng |
---|---|
論文名稱: |
在有機太陽電池上藉由偏極化的自組裝單薄膜層來修正功函數 Study of Work Function Modification by Polarized SAM on Organic Solar Cell |
指導教授: |
李明昌
Ming-Chang Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 太陽能電池 、有機 、自組裝 、金 、硫醇化合物 |
外文關鍵詞: | Organic solar cell, self-assembly monolayer, alkanethiols, SAM, Au |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由自組裝性單薄膜層 (SAM,self-assembly monolayer)來調變Pentacene與Au電極之間的功函數差,可以有效改善有機太陽能電池電洞或電子的注入或傳輸。 在自組裝材料的選擇上,使用正反兩極性的自組裝材料,其對應到的官能基分別為氟基 (fluorine)與甲基 (methyl)。 SAM對於有機光電元件是一層絕緣層,考量到自組裝材料的厚度會影響元件的串聯電阻,因此我們探討改變極性材料的鏈長對有機太陽電池的影響。 另外,我們選用Au作為半穿透式電極基板,在蒸鍍10nm以後所量測到的電阻與穿透率分別為5Ω/cm及74% (wavelength at 562nm),其優點除了良導性之外也容易找到適合的硫醇化合物 (alkanethiols)作為自組裝性的材料。 最後,我們針對鏈長、正反極性及金薄膜與ITO薄膜等等不同的基板製作有機太陽電池並比較其電壓電流特性。
Using SAM (self-assembly monolayer) to modify the work function of anode in organic solar cells was studied in this research. The SAM material, terminated with fluorine or methyl group, corresponds to the forward or backward dipole. We investigated the influence of SAM length on the I-V characteristics of devices, considering SAM an insulator. Besides, Au was chosen to be the semi-transparent anode because of its good conductivity and easy attachment to alkanethiols, which is the other termination of the SAM. The optimal thickness was calibrated to have contact resistance of 5Ω/cm and optical transmittance of 74%. Finally, we fabricated devices with different SAMs substrates (Au and ITO) and compared the performance.
[1] Smalley, R. (2003). Energy & Nanotechnology Conference Rice University, Houston.
[2] Sons, J. W. (2003). "Handbook of PV science and engineering."
[3] www.erec-renewables.org
[4] Green, M. A. Solar cells (Operating Principles, Technology, and System Applications. Prentice-Hall, Inc., Englewood Cliffs.
[5] Sun, S., Z. Fan, et al. (2005). "Organic solar cell optimizations." Journal of Materials Science 40(6): 1429-1443.
[6] Green, M. A., K. Emery, et al. (2004). "Solar cell efficiency tables (version 23)." Progress in Photovoltaics 12(1): 55-62.
[7] Halls, J. J. M., C. A. Walsh, et al. (1995). "Efficient Photodiodes from Interpenetrating Polymer Networks." Nature 376(6540): 498-500.
[8] Yoo, S., B. Domercq, et al. (2004). "Efficient thin-film organic solar cells based on pentacene/C-60 heterojunctions." Applied Physics Letters 85(22): 5427-5429.
[9] Xue, J. G., S. Uchida, et al. (2004). "4.2% efficient organic photovoltaic cells with low series resistances." Applied Physics Letters 84(16): 3013-3015.
[10] Neaman "Semiconductor Physics and Devices."
[11] Swenberg, P. "Electronic Processes in Organic Crystals and Polymers."
[12] Markvart, T. and L. Castaner "Solar cells : Materials, Manufacture and Operation."
[13] Moliton, A. "Optoelectronics of molecules and Polymers."
[14] Ehler, T. T., N. Malmberg, et al. (1997). "Characterization of self-assembled monolayers on silver and gold using surface plasmon resonance spectroscopy - Reply." Journal of Physical Chemistry B 101(40): 8043-8043.
[15] Peumans, P., A. Yakimov, et al. (2003). "Small molecular weight organic thin-film photodetectors and solar cells." Journal of Applied Physics 93(7): 3693-3723.
[16] Green, M. A. (2000). "The future of crystalline silicon solar cells." Progress in Photovoltaics 8(1): 127-139.
[17] Huynh, W. U., J. J. Dittmer, et al. (2003). "Charge transport in hybrid nanorod-polymer composite photovoltaic cells." Physical Review B 67(11).
[18] Yoo, S., B. Domercq, et al. (2005). "Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C-60." Journal of Applied Physics 97(10).
[19] Liu, J., Y. J. Shi, et al. (2001). "Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices." Advanced Functional Materials 11(6): 420-424.
[20] Mihailetchi, V. D., P. W. M. Blom, et al. (2003). "Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells." Journal of Applied Physics 94(10): 6849-6854.
[21] Khodabakhsh, S., B. M. Sanderson, et al. (2006). "Using self-assembling dipole molecules to improve charge collection in molecular solar cells." Advanced Functional Materials 16(1): 95-100.
[22] Brabec, C. J., A. Cravino, et al. (2001). "Origin of the open circuit voltage of plastic solar cells." Advanced Functional Materials 11(5): 374-380.
[23] Yang, F., M. Shtein, et al. (2005). "Controlled growth of a molecular bulk heterojunction photovoltaic cell." Nature Materials 4(1): 37-41.
[24] Geens, W., T. Martens, et al. (2004). "Modelling the short-circuit current of polymer bulk heterojunction solar cells." Thin Solid Films 451-52: 498-502.
[25] Noh, S.-U. K., Ji-Young; Lee, Changhee; Lee, Moon-Jae; Jung, Byung-Jun; Hwang, Do-Hoon; Lee, Soo-Hyoung; Kim, Hyunjung (2006). Correlation between the temperature dependences of short-circuit current and carrier mobility in P3HT:PCBM blend solar cells. Proceedings of SPIE.
[26] Koster, L. J. A., V. D. Mihailetchi, et al. (2005). "Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells." Applied Physics Letters 87(20).
[27] Gadenne, P., A. Beghdadi, et al. (1988). "Optical Crossover Analysis of Granular Gold-Films at Percolation." Optics Communications 65(1): 17-21.
[28] Santucci, S. and P. Picozzi (1985). "Discontinuous Ag/Au Films as Non-Erasable Media for Laser Writing." Thin Solid Films 125(3-4): 361-365.
[29] Choi, K. H., J. Y. Kim, et al. (1999). "ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode." Thin Solid Films 341(1-2): 152-155.
[30] Liu, B., E. Lambers, et al. (2002). "Effects of a Ni cap layer on transparent-Ni/Au ohmic contacts to p-GaN." Journal of Vacuum Science & Technology B 20(4): 1394-1401.
[31] Balamurugan, B. and T. Maruyama (2005). "Evidence of an enhanced interband absorption in Au nanoparticles: Size-dependent electronic structure and optical properties." Applied Physics Letters 87(14).
[32] Bigelow, W. C., D. L. Pickett, et al. (1946). JOURNAL OF COLLOID AND INTERFACE SCIENCE 1: 513.
[33] Nuzzo, R. G. and D. L. Allara (1983). "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces." Journal of the American Chemical Society 105(13): 4481-4483.
[34] Delamarche, E., B. Michel, et al. (1994). "Thermal-Stability of Self-Assembled Monolayers." Langmuir 10(11): 4103-4108.
[35] Laibinis, P. E., J. J. Hickman, et al. (1989). "Orthogonal Self-Assembled Monolayers - Alkanethiols on Gold and Alkane Carboxylic-Acids on Alumina." Science 245(4920): 845-847.
[36] Sagiv, J. (1980). "Organized Monolayers by Adsorption .1. Formation and Structure of Oleophobic Mixed Monolayers on Solid-Surfaces." Journal of the American Chemical Society 102(1): 92-98.
[37] Rose, A. (1955). Physical Review 97: 1531.
[38] Lampert, M. A. (1959). RCA Review 97: 1538.
[39] Smith, R. W. and A. Rose (1955). Physical Review 97: 1531.
[40] Burrows, P. E., Z. Shen, et al. (1996). "Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices." Journal of Applied Physics 79(10): 7991-8006.
[41] Bozano, L., S. A. Carter, et al. (1999). "Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes." Applied Physics Letters 74(8): 1132-1134.
[42] http://www.nscric.nthu.edu.tw/index1.html
[43] http://cnst.nctu.edu.tw/facili.php#xray
[44] Riken KeIkI Co., LTD
[45] Watkins, N. J., L. Yan, et al. (2002). "Electronic structure symmetry of interfaces between pentacene and metals." Applied Physics Letters 80(23): 4384-4386.
[46] N. J. Watkins, Q. T. L., S. Zorba, Li Yan, Yongli Gao, S. F. Nelson, C. S. Kuo, and T. N. Jackson (2001). "Photoemission Characterization of Interfaces between Au and Pentacene." Proceedings of SPIE 4466.
[47] Lee, K. and J. Y. Yu (2005). "Ab initio study of pentacene on Au(001) surface." Surface Science 589(1-3): 8-18.
[48] France, C. B., P. G. Schroeder, et al. (2003). "Scanning tunneling microscopy study of the coverage-dependent structures of pentacene on Au(111)." Langmuir 19(4): 1274-1281.
[49] Kim, W. K. and J. L. Lee (2006). "Effect of oxygen plasma treatment on reduction of contact resistivity at pentacene/Au interface." Applied Physics Letters 88(26).
[50] Kang, J. H. and X. Y. Zhu (2006). "Layer-by-layer growth of incommensurate, polycrystalline, lying-down pentacene thin films on Au(111)." Chemistry of Materials 18(5): 1318-1323.
[51] Bouchoms, I. P. M., W. A. Schoonveld, et al. (1999). "Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates." Synthetic Metals 104(3): 175-178.
[52] 有機薄膜電晶體之載子移動率與微結構關係. 電子與材料雜誌. 27: 18-27.
[53] Xue, J. G., S. Uchida, et al. (2004). "Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions." Applied Physics Letters 85(23): 5757-5759.
[54] Peumans, P. and S. R. Forrest (2001). "Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells." Applied Physics Letters 79(1): 126-128.
[55] Uchida, S., J. G. Xue, et al. (2004). "Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C-60 active layer." Applied Physics Letters 84(21): 4218-4220.
[56] Hirose, Y., A. Kahn, et al. (1996). "Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA." Physical Review B 54(19): 13748-13758.
[57] Organic Chemicals, Tokyo Chemical Industry Co., LTD.
[58] de Boer, B., A. Hadipour, et al. (2005). "Tuning of metal work functions with self-assembled monolayers." Advanced Materials 17(5): 621-+.
[59] http://www.nihs.go.jp/english/index.html
[60] Himmel, H. J., A. Terfort, et al. (1998). "Fabrication of a carboxyl-terminated organic surface with self-assembly of functionalized terphenylthiols: The importance of hydrogen bond formation." Journal of the American Chemical Society 120(46): 12069-12074.
[61] Ehler, T. T., N. Malmberg, et al. (1997). "Characterization of self-assembled alkanethiol monolayers on silver and gold using surface plasmon spectroscopy." Journal of Physical Chemistry B 101(8): 1268-1272.
[62] Bain, C. D., E. B. Troughton, et al. (1989). "Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold." Journal of the American Chemical Society 111(1): 321-335.
[63] Bain, C. D., J. Evall, et al. (1989). "Formation of Monolayers by the Coadsorption of Thiols on Gold - Variation in the Head Group, Tail Group, and Solvent." Journal of the American Chemical Society 111(18): 7155-7164.
[64] Yang-Che Hung (2006). Improve organic solar cells carriers extraction efficiency by surface treatment. Taiwan: 31.
[65] Dimitrakopoulos, P., J. F. Brady, et al. (2001). "Short- and intermediate-time behavior of the linear stress relaxation in semiflexible polymers." Physical Review E 6405(5).
[66] Hu, W. S., Y. T. Tao, et al. (2005). "Molecular orientation of evaporated pentacene films on gold: Alignment effect of self-assembled monolayer." Langmuir 21(6): 2260-2266.
[67] Shtein, M., J. Mapel, et al. (2002). "Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors." Applied Physics Letters 81(2): 268-270.
[68] Lim, S. C., S. H. Kim, et al. (2005). "Surface-treatment effects on organic thin-film transistors." Synthetic Metals 148(1): 75-79.
[69] Lee, J. K., J. M. Koo, et al. (2003). "Studies of pentacene-based thin film devices produced by cluster beam deposition methods." Optical Materials 21(1-3): 451-454.
[70] Jarosz, G., R. Signerski, et al. (2001). "The analysis of photoenhanced current in organic films: the influence of charge carrier diffusion." Thin Solid Films 396(1-2): 196-200.
[71] Tseng, C.-T. (2006). Organic solar cell by using a semi-transparent anode. Optics and Photonics (OPT 2006), Taiwan.
[72] Konenkamp, R., G. Priebe, et al. (1999). "Carrier mobilities and influence of oxygen in C-60 films." Physical Review B 60(16): 11804-11808.
[73] Zhao, Y., S. Y. Liu, et al. (2001). "Effect of LiF buffer layer on the performance of organic electroluminescent devices." Thin Solid Films 397(1-2): 208-210.
[74] Whiting, G. L., H. J. Snaith, et al. (2006). "Enhancement of charge-transport characteristics in polymeric films using polymer brushes." Nano Letters 6(3): 573-578.
[75] Khodabakhsh, S., D. Poplavskyy, et al. (2004). "Using self-assembling dipole molecules to improve hole injection in conjugated polymers." Advanced Functional Materials 14(12): 1205-1210.
[76] Zhang, S. T., X. M. Ding, et al. (2004). "Buffer-layer-induced barrier reduction: Role of tunneling in organic light-emitting devices." Applied Physics Letters 84(3): 425-427.
[77] Zhao, J. M., Y. Q. Zhan, et al. (2004). "Mechanisms of injection enhancement in organic light-emitting diodes through insulating buffer." Applied Physics Letters 84(26): 5377-5379.
[78] Ehler, T. T., N. Malmberg, et al. (1997). "Studies of organometallic self-assembled monolayers on Ag and Au using surface plasmon spectroscopy." Journal of Physical Chemistry B 101(16): 3174-3180.