研究生: |
王咨棋 Wang, Tzu-Chi |
---|---|
論文名稱: |
含聚醚之聚氧代氮代苯并環己烷交聯固態高分子電解質於鋰金屬二次電池之應用 Polyether Based Polybenzoxazine as Crosslinked Solid Polymer Electrolytes for the Application of Lithium Metal Secondary Batteries |
指導教授: |
劉英麟
Liu, Ying-Ling |
口試委員: |
鄭如忠
Jeng, Ru-Jong 蔡敬誠 Tsai, Jing-Cherng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 固態高分子電解質 、鋰金屬二次電池 、交聯 |
外文關鍵詞: | Solid Polymer Electrolyte, Lithium Metal Secondary Battery, Crosslink |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討交聯固態高分子電解質(SPE)於鋰金屬二次電池之應用,設計合成含聚醚鏈段之可交聯高分子,並將其以兩種不同交聯方式製作成SPE,期望其具高離子電導度與高機械強度,以利於鋰金屬二次電池之應用。
本實驗以Jeffamine ED-2003、雙酚A(Bisphenol A)、及聚甲醛(Paraformaldehyde)合成含聚醚鏈段之聚氧代氮代苯并環己烷(PBz-PEG),將其與鋰鹽混合後,利用熱交聯或雙硫醇交聯劑製成交聯SPE。本實驗設計利用PBz-PEG結構中非晶之聚醚鏈段幫助鋰離子傳遞,而氧代氮代苯并環己烷官能基則可提供穩固的交聯結構,並同時抑制聚醚的結晶與增加SPE機械性質,此外氧代氮代苯并環己烷官能基具高極性,推測可幫助鋰離子傳遞,使SPE於室溫下擁有高離子電導度4.3 × 10-5 (S cm-1),而穩固的交聯結構則可抑制枝晶鋰生長,提供電池循環高穩定性。
本篇研究中,探討了熱交聯與雙硫醇交聯SPE對於鋰金屬電極穩定性之影響,以及鋰鹽種類、鋰離子濃度、塑化劑比例、與黏著劑種類的最佳化挑選,並解釋其機制及影響原因。
該SPE具有良好的枝晶鋰抑制能力,在Li/Li電池量測中,短路前可承受704小時(507 C cm-2)之0.2(mA cm-2)等電流充放電。在0.2 C、60 ℃下,Li/LiFePO4電池之電容量高達142 (mAh g-1),且在100圈循環後可維持93%的初始電容量。在30 ℃、40 ℃、50 ℃溫度環境下,電池仍能維持一定的電容量,代表SPE可被應用在寬廣的溫度範圍下。本實驗為SPE領域展示了新穎材料之應用,為固態鋰金屬二次電池開啟了新的契機。
All-solid-state lithium metal secondary batteries (LMB) have great promise to be next generation rechargeable batteries. Among various categories of electrolyte, solid polymer electrolytes (SPE) possess the ability of lithium dendrite growth resistance which could increase cycle life and coulombic efficiency of LMB. Also, the absence of flammable organic solvent in SPE could ensure the safety of batteries. However, most SPE suffer from low ionic conductivity due to the crystallization of polyether chain, limiting the practical application.
Herein, we developed a novel benzoxazine-crosslinked polyether based SPE. Benzoxazine groups were introduced into polyether chain as crosslinking sites which could suppress crystallization and provide mechanical strength to SPE. Additionally, under the effects of high polarity of benzoxazine and good Li+ conductibility of polyether chain, the SPE exhibited high ionic conductivity (~ 4.3 × 10-5 S cm-1) at ambient temperature without addition of plasticizer. Moreover, the mechanical strength of SPE provided by crosslinked structure had excellent resistance to lithium dendrite growth.
Different effects of both thermal and dithiol crosslinked SPEs on LMB were examined, respectively. The optimization of types of Li salts, Li salts concentration, plasticizer amount and types of binders had been done to improve the battery performance. Furthermore, attempts have been made to clarify the effects and causes.
To investigate performance on practical application, Li/Li cell and Li/LiFePO4 cell tests were conducted. Li/Li cell test results showed excellent lithium dendrite suppression ability of SPE. SPE could resist the dendrite growth for 704 hours (507 C cm-2) without internal short circuit. Capacity as high as 142 (mAh g-1) was obtained in Li/LiFePO4 cell at the rate of 0.2 C under 60 ℃, and 93% initial capacity was maintained after 100 cycles. The cell was also performed under 30, 40, 50 ℃ to assure the capability of SPE in various temperature. This study has opened up a novel crosslinking system for SPE and offer a new opportunity for solid-state LMB development.
1 Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy policy 2009, 37 (1), 181-189.
2 Zhang, R.; Hashemi, N.; Ashuri, M.; Montazami, R. In Advanced gel polymer electrolyte for lithium-ion polymer batteries, ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, 2013; American Society of Mechanical Engineers: 2013; pp V001T05A005-V001T05A005.
3 Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-35.
4 Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 2018, 3 (4), 279-289.
5 Pillot, C. In The rechargeable battery market and main trends 2014–2025, 31st International Battery Seminar & Exhibit, 2015; 2015.
6 Comparison Table of Secondary Batteries. Battery University. Battery University 2018 Retrieved from: https://batteryuniversity.com/learn/article /secondary_batteries
7 Murphy, D., Materials for advanced batteries. Springer Science & Business Media: 2013; Vol. 2.
8 Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013, 135 (4), 1167-76.
9 Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-67.
10 Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-7.
11 Orsini, F.; du Pasquier, A.; Beaudouin, B.; Tarascon, J. M.; Trentin, M.; Langenhuizen, N.; de Beer, E.; Notten, P. In situ SEM study of the interfaces in plastic lithium cells. Journal of Power Sources 1999, 81, 918-921.
12 Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 2017, 5 (23), 11671-11681.
13 Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 2014, 9 (8), 618-23.
14 Rao, B.; Francis, R.; Christopher, H. Lithium‐aluminum electrode. Journal of The Electrochemical Society 1977, 124 (10), 1490-1492.
15 Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources 2011, 196 (1), 13-24.
16 Murphy, D. W.; Disalvo, F. J.; Carides, J. N.; Waszczak, J. V. Topochemical Reactions of Rutile Related Structures with Lithium. Materials Research Bulletin 1978, 13 (12), 1395-1402.
17 Lazzari, M.; Scrosati, B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. Journal of The Electrochemical Society 1980, 127 (3), 773-774.
18 Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Advanced Materials 1998, 10 (10), 725-763.
19 Xu, K.; Zhang, S.; Poese, B. A.; Jow, T. R. Lithium Bis(oxalato)borate Stabilizes Graphite Anode in Propylene Carbonate. Electrochemical and Solid-State Letters 2002, 5 (11).
20 Fong, R. a. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of The Electrochemical Society 1990, 137 (7).
21 Luo, W.; Bommier, C.; Jian, Z.; Li, X.; Carter, R.; Vail, S.; Lu, Y.; Lee, J. J.; Ji, X. Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces 2015, 7 (4), 2626-31.
22 Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
23 Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 2010, 195 (4), 939-954.
24 Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
25 Whittingham, M. S. Lithium Batteries and Cathode Materials. Chemical Reviews 2004, 104 (10), 4271-4302.
26 Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO[sub 4] for Lithium Battery Cathodes. Journal of The Electrochemical Society 2001, 148 (3).
27 Bhatt, M. D.; O'Dwyer, C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 2015, 17 (7), 4799-844.
28 Megahed, S.; Scrosati, B. Lithium-ion rechargeable batteries. Journal of Power Sources 1994, 51 (1-2), 79-104.
29 Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N.-S.; Cho, J. A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie 2012, 124 (35), 8892-8897.
30 Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry 2013, 5 (12), 1042-8.
31 Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Hyperbranched beta-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett 2014, 14 (2), 864-70.
32 Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357 (6348), 279-283.
33 Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D. Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries. Advanced Functional Materials 2014, 24 (37), 5904-5910.
34 Mao, M.; Yan, F.; Cui, C.; Ma, J.; Zhang, M.; Wang, T.; Wang, C. Pipe-Wire TiO2–Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries. Nano Letters 2017, 17 (6), 3830-3836.
35 Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters 2011, 11 (7), 2949-2954.
36 Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2007, 3, 31.
37 Li, W.; Sun, X.; Yu, Y. Si-, Ge-, Sn-Based Anode Materials for Lithium-Ion Batteries: From Structure Design to Electrochemical Performance. Small Methods 2017, 1 (3), 1600037.
38 Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12, 194.
39 Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 1994, 69 (3), 173-183.
40 Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652.
41 Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
42 Gofer, Y.; Ben-Zion, M.; Aurbach, D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. Journal of Power Sources 1992, 39 (2), 163-178.
43 Zheng, J.; Gu, M.; Chen, H.; Meduri, P.; Engelhard, M. H.; Zhang, J.-G.; Liu, J.; Xiao, J. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. Journal of Materials Chemistry A 2013, 1 (29), 8464-8470.
44 Miao, R.; Yang, J.; Feng, X.; Jia, H.; Wang, J.; Nuli, Y. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources 2014, 271, 291-297.
45 Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications 2013, 4, 1481.
46 Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. High rate and stable cycling of lithium metal anode. Nature Communications 2015, 6, 6362.
47 Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications 2015, 6, 7436.
48 Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
49 Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J.-G. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society 2013, 135 (11), 4450-4456.
50 Umeda, G. A.; Menke, E.; Richard, M.; Stamm, K. L.; Wudl, F.; Dunn, B. Protection of lithium metal surfaces using tetraethoxysilane. Journal of Materials Chemistry 2011, 21 (5), 1593-1599.
51 Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications 2015, 6, 8058.
52 Ryou, M.-H.; Lee, D. J.; Lee, J.-N.; Lee, Y. M.; Park, J.-K.; Choi, J. W. Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators. Advanced Energy Materials 2012, 2 (6), 645-650.
53 Lin, D.; Liu, Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology 2016, 11, 626.
54 Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nature Communications 2016, 7, 10992.
55 Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 2016, 1, 16010.
56 Monroe, C.; Newman, J. The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. Journal of The Electrochemical Society 2005, 152 (2), A396-A404.
57 Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. Journal of the American Chemical Society 2014, 136 (20), 7395-7402.
58 Lin, D.; Yuen, P. Y.; Liu, Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus. Advanced Materials 2018, 30 (32), 1802661.
59 Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418.
60 Tarascon, J. M.; Guyomard, D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics 1994, 69 (3), 293-305.
61 Smart, M. C.; Ratnakumar, B. V.; Surampudi, S. Electrolytes for Low‐Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates. Journal of The Electrochemical Society 1999, 146 (2), 486-492.
62 Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.-K. Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chemistry – A European Journal 2011, 17 (51), 14326-14346.
63 Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J. B.; Kinoshita, K. Chemical Reactivity of PF 5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochemical and Solid-State Letters 2001, 4 (4), A42-A44.
64 Xu, K.; Zhang, S.; Jow, T. R.; Xu, W.; Angell, C. A. LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation. Electrochemical and Solid-State Letters 2002, 5 (1), A26-A29.
65 Zheng, F.; Kotobuki, M.; Song, S.; Lai, M. O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources 2018, 389, 198-213.
66 Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2, 16103.
67 Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources 2010, 195 (15), 4554-4569.
68 Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14 (11), 589.
69 Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A 2016, 4 (26), 10038-10069.
70 Meyer, W. H. Polymer Electrolytes for Lithium-Ion Batteries. Advanced Materials 1999, 10 (6), 439-448.
71 Ratner, M. A.; Johansson, P.; Shriver, D. F. Polymer Electrolytes: Ionic Transport Mechanisms and Relaxation Coupling. MRS Bulletin 2000, 25 (3), 31-37.
72 Agrawal, R. C.; Pandey, G. P. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. Journal of Physics D: Applied Physics 2008, 41 (22), 223001.
73 Watanabe, M.; Rikukawa, M.; Sanui, K.; Ogata, N.; Kato, H.; Kobayashi, T.; Ohtaki, Z. Ionic conductivity of polymer complexes formed by poly(ethylene succinate) and lithium perchlorate. Macromolecules 1984, 17 (12), 2902-2908.
74 Vachon, C.; Labreche, C.; Vallee, A.; Besner, S.; Dumont, M.; Prud'homme, J. Microphase Separation and Conductivity Behavior of Poly(propylene oxide)-Lithium Salt Electrolytes. Macromolecules 1995, 28 (16), 5585-5594.
75 Blonsky, P. M.; Shriver, D. F.; Austin, P.; Allcock, H. R. Polyphosphazene solid electrolytes. Journal of the American Chemical Society 1984, 106 (22), 6854-6855.
76 Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. High ionic conductivity in poly(dimethyl siloxane-co-ethylene oxide) dissolving lithium perchlorate. Journal of Polymer Science: Polymer Letters Edition 1984, 22 (12), 659-663.
77 Yoon, H.-K.; Chung, W.-S.; Jo, N.-J. Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochimica Acta 2004, 50 (2), 289-293.
78 Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources 1999, 77 (2), 183-197.
79 Li, Z. H.; Zhang, P.; Zhang, H. P.; Wu, Y. P.; Zhou, X. D. A lotus root-like porous nanocomposite polymer electrolyte. Electrochemistry Communications 2008, 10 (5), 791-794.
80 Lee, Y.-Y.; Liu, Y.-L. Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery. Electrochimica Acta 2017, 258, 1329-1335.
81 Sadoway, D. R. Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. Journal of Power Sources 2004, 129 (1), 1-3.
82 Singh, M.; Odusanya, O.; Wilmes, G. M.; Eitouni, H. B.; Gomez, E. D.; Patel, A. J.; Chen, V. L.; Park, M. J.; Fragouli, P.; Iatrou, H.; Hadjichristidis, N.; Cookson, D.; Balsara, N. P. Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes. Macromolecules 2007, 40 (13), 4578-4585.
83 Panday, A.; Mullin, S.; Gomez, E. D.; Wanakule, N.; Chen, V. L.; Hexemer, A.; Pople, J.; Balsara, N. P. Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes. Macromolecules 2009, 42 (13), 4632-4637.
84 Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D.; Balsara, N. P. Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes. Nano Letters 2009, 9 (3), 1212-1216.
85 Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E. Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3. Polymer 1984, 25 (11), 1600-1602.
86 Zuo, X.; Liu, X.-M.; Cai, F.; Yang, H.; Shen, X.-D.; Liu, G. A novel all-solid electrolyte based on a co-polymer of poly-(methoxy/hexadecal-poly(ethylene glycol) methacrylate) for lithium-ion cell. Journal of Materials Chemistry 2012, 22 (41), 22265-22271.
87 Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456.
88 Croce, F.; Settimi, L.; Scrosati, B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochemistry Communications 2006, 8 (2), 364-368.
89 Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. Journal of Power Sources 2016, 301, 47-53.
90 Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chemical Society Reviews 2017, 46 (3), 797-815.
91 Doyle, M.; Fuller, T. F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochimica Acta 1994, 39 (13), 2073-2081.
92 Oh, H.; Xu, K.; Yoo, H. D.; Kim, D. S.; Chanthad, C.; Yang, G.; Jin, J.; Ayhan, I. A.; Oh, S. M.; Wang, Q. Poly(arylene ether)-Based Single-Ion Conductors for Lithium-Ion Batteries. Chemistry of Materials 2016, 28 (1), 188-196.
93 Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Materials 2013, 12, 452.
94 Mehta, M. A.; Fujinami, T.; Inoue, T. Boroxine ring containing polymer electrolytes. Journal of Power Sources 1999, 81-82, 724-728.
95 Anne Mehta, M.; Fujinami, T.; Inoue, S.; Matsushita, K.; Miwa, T.; Inoue, T. The use of boroxine rings for the development of high performance polymer electrolytes. Electrochimica Acta 2000, 45 (8), 1175-1180.
96 Suk, J.; Lee, Y. H.; Kim, D. Y.; Kim, D. W.; Cho, S. Y.; Kim, J. M.; Kang, Y. Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. Journal of Power Sources 2016, 334, 154-161.
97 Zhou, B.; He, D.; Hu, J.; Ye, Y.; Peng, H.; Zhou, X.; Xie, X.; Xue, Z. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. Journal of Materials Chemistry A 2018, 6 (25), 11725-11733.
98 Pan, Q.; Smith, D. M.; Qi, H.; Wang, S.; Li, C. Y. Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Advanced Materials 2015, 27 (39), 5995-6001.
99 Ghosh, N. N.; Kiskan, B.; Yagci, Y. Polybenzoxazines—New high performance thermosetting resins: Synthesis and properties. Progress in Polymer Science 2007, 32 (11), 1344-1391.
100 Su, Y.-C.; Chang, F.-C. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer 2003, 44 (26), 7989-7996.
101 Agag, T.; Takeichi, T. Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets. Macromolecules 2003, 36 (16), 6010-6017.
102 Liu, C.-T.; Liu, Y.-L. pH-Induced switches of the oil- and water-selectivity of crosslinked polymeric membranes for gravity-driven oil–water separation. Journal of Materials Chemistry A 2016, 4 (35), 13543-13548.
103 Lin, H.-K.; Liu, Y.-L. Sulfur Radical Transfer and Coupling Reaction to Benzoxazine Groups: A New Reaction Route for Preparation of Polymeric Materials Using Elemental Sulfur as a Feedstock. Macromolecular Rapid Communications 2018, 39 (8), 1700832.
104 Khan, M. M.; Halder, K.; Shishatskiy, S.; Filiz, V. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance. Polymers 2018, 10 (2).
105 Liao, Y.-L.; Hu, C.-C.; Lai, J.-Y.; Liu, Y.-L. Crosslinked polybenzoxazine based membrane exhibiting in-situ self-promoted separation performance for pervaporation dehydration on isopropanol aqueous solutions. Journal of Membrane Science 2017, 531, 10-15.
106 Li, H.-Y.; Li, G.-A.; Lee, Y.-Y.; Tuan, H.-Y.; Liu, Y.-L. A Thermally Stable, Combustion-Resistant, and Highly Ion-Conductive Separator for Lithium-Ion Batteries Based on Electrospun Fiber Mats of Crosslinked Polybenzoxazine. Energy Technology 2016, 4 (4), 551-557.
107 Foster, D.; Wolfenstine, J.; Behl, W. Tertiary polyamines as additives to lithium-ion battery electrolytes. Proc of Electrochem Soc 1999, 98, 391-397.
108 Yoshizawa-Fujita, M.; MacFarlane, D. R.; Howlett, P. C.; Forsyth, M. A new Lewis-base ionic liquid comprising a mono-charged diamine structure: A highly stable electrolyte for lithium electrochemistry. Electrochemistry Communications 2006, 8 (3), 445-449.
109 Chirachanchai, S.; Laobuthee, A.; Phongtamrug, S.; Siripatanasarakit, W.; Ishida, H. A novel ion extraction material using host-guest properties of oligobenzoxazine local structure and benzoxazine monomer molecular assembly. Journal of Applied Polymer Science 2000, 77 (12), 2561-2568.
110 Agag, T.; Geiger, S.; Alhassan, S. M.; Qutubuddin, S.; Ishida, H. Low-Viscosity Polyether-Based Main-Chain Benzoxazine Polymers: Precursors for Flexible Thermosetting Polymers. Macromolecules 2010, 43 (17), 7122-7127.
111 Gorodisher, I.; DeVoe, R. J.; Webb, R. J., Chapter 11 - Catalytic Opening of Lateral Benzoxazine Rings by Thiols. In Handbook of Benzoxazine Resins, Ishida, H., Agag, T., Eds. Elsevier: Amsterdam, 2011; pp 211-234.
112 Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polymer Chemistry 2012, 3 (4), 935-945.
113 Bektas, S.; Kiskan, B.; Orakdogen, N.; Yagci, Y. Synthesis and properties of organo-gels by thiol-benzoxazine chemistry. Polymer 2015, 75, 44-50.
114 Kang, Y.; Lee, W.; Hack Suh, D.; Lee, C. Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical properties. Journal of Power Sources 2003, 119-121, 448-453.
115 Huang, Z.; Pan, Q.; Smith, D. M.; Li, C. Y. Plasticized Hybrid Network Solid Polymer Electrolytes for Lithium-Metal Batteries. Advanced Materials Interfaces 2019, 6 (2), 1801445.
116 Ben youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, S.; Armand, M. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries. Electrochimica Acta 2016, 220, 587-594.
117 Chen, S.; Wang, J.; Wei, Z.; Zhang, Z.; Deng, Y.; Yao, X.; Xu, X. One-pot synthesis of crosslinked polymer electrolyte beyond 5V oxidation potential for all-solid-state lithium battery. Journal of Power Sources 2019, 431, 1-7.
118 Grewal, M. S.; Tanaka, M.; Kawakami, H. Free-standing polydimethylsiloxane-based cross-linked network solid polymer electrolytes for future lithium ion battery applications. Electrochimica Acta 2019, 307, 148-156.
119 Vallée, A.; Besner, S.; Prud'Homme, J. Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour. Electrochimica Acta 1992, 37 (9), 1579-1583.
120 Lascaud, S.; Perrier, M.; Vallee, A.; Besner, S.; Prud'homme, J.; Armand, M. Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes. Macromolecules 1994, 27 (25), 7469-7477.
121 Stolwijk, N. A.; Heddier, C.; Reschke, M.; Wiencierz, M.; Bokeloh, J.; Wilde, G. Salt-Concentration Dependence of the Glass Transition Temperature in PEO–NaI and PEO–LiTFSI Polymer Electrolytes. Macromolecules 2013, 46 (21), 8580-8588.
122 Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
123 Han, H.-B.; Zhou, S.-S.; Zhang, D.-J.; Feng, S.-W.; Li, L.-F.; Liu, K.; Feng, W.-F.; Nie, J.; Li, H.; Huang, X.-J.; Armand, M.; Zhou, Z.-B. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources 2011, 196 (7), 3623-3632.
124 Zhang, H.; Liu, C.; Zheng, L.; Xu, F.; Feng, W.; Li, H.; Huang, X.; Armand, M.; Nie, J.; Zhou, Z. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochimica Acta 2014, 133, 529-538.
125 Aldalur, I.; Martinez-Ibañez, M.; Piszcz, M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. Journal of Power Sources 2018, 383, 144-149.
126 Judez, X.; Zhang, H.; Li, C.; González-Marcos, J. A.; Zhou, Z.; Armand, M.; Rodriguez-Martinez, L. M. Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li–S Cell. The Journal of Physical Chemistry Letters 2017, 8 (9), 1956-1960.
127 Kim, H.; Wu, F.; Lee, J. T.; Nitta, N.; Lin, H.-T.; Oschatz, M.; Cho, W. I.; Kaskel, S.; Borodin, O.; Yushin, G. In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes. Advanced Energy Materials 2015, 5 (6), 1401792.
128 Lu, Y.; Tu, Z.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials 2014, 13, 961.
129 Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Physical Review A 1990, 42 (12), 7355-7367.
130 Lee, J.-S.; Sakaushi, K.; Antonietti, M.; Yuan, J. Poly(ionic liquid) binders as Li+ conducting mediators for enhanced electrochemical performance. RSC Advances 2015, 5 (104), 85517-85522.
131 Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy & Environmental Science 2010, 3 (12), 1995-2002.
132 Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials 2017, 29 (13), 5574-5582.
133 Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science 2018, 81, 114-143.
134 Hu, Q. Electrode-Electrolyte Interfaces in Solid Polymer Lithium Batteries. Doctoral dissertation, Harvard University, 2012.