研究生: |
陳家玄 Chen, Jia-Xuan |
---|---|
論文名稱: |
催化1,3-二烯烴進行[2+2]-亞硝基芳香烴環化加成反應和[3+2]-α-重氮酮環化反應 Catalytic [2+2]-Nitrosoarenes Cycloaddition and [3+2]-α-Aryl Diazoketones Annulation of 1,3-Dienes |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
彭之皓
Peng, Chi-How 吳明忠 Wu, Ming-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 294 |
中文關鍵詞: | 四(3,5-二(三氟甲基)苯基)硼酸鈉 、亞硝基芳香烴 、[2+2]-環化加成 、4-胺基-1-環戊烯-3-酮 、哌啶 |
外文關鍵詞: | NaBARF, Nitrosoarenes, [2+2]-Cycloadditions, 4-Aminocyclopent-1-en-3-ones, Piperidones |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一章
此章展示了利用NaBARF催化2-酯基環戊二烯與亞硝基苯進行[2+2]-環化加成反應,得到兩個能夠分離之位置異構物的6-氧-7-雜氮二[3.2.0]庚環產物,且於熱平衡下重排為相同產物。由於此反應為可逆之[2+2]-亞硝基/烯環化加成反應,在熱反應平衡下,會具有選擇性的進一步生成4-胺基環戊烯-3-酮產物;在C(4)位置沒有取代基的情況下,受質則會在與亞硝基苯加成後,快速地進行擴環,有效率的得到一六環之哌啶酮產物。
第二章
此章節介紹了我們成功利用金金屬催化劑催化α-苯基重氮酮與三取代之烯類化合物進行[3+2]-環化反應,得到具有呋喃(furan)結構之產物。反應過程中,α-苯基重氮酮會形成α-氧代金碳烯中間體,此時烯類化合物能夠作為親核體攻打金碳烯中間體,形成一陽離子丙烯基中間體,最後環化得到有用的呋喃(furan)結構之產物。
Chapter I
NaBARF catalyzes the [2+2]-cycloaddition of 1,4-disubstituted cyclopenta-1,3-dien-2-yl esters with nitrsobenzene in toluene, affording two isolable regioisomers of 6-oxa-7-azabicyclo[3.2.0]heptanes, which thermally rearranged into the same 4-aminocyclopent-1-en-3-ones chemoselectively. The chemoselectivity of this reaction is due to a rapidly reversible nature of the initial [2+2]-nitroso/alkene cycloadditions. In the case of 4-substituted cyclopenta-1,3-dien-2-yl esters, their initial [2+2]-cycloaddition intermediates undergo a rapid ring expansion to afford six-membered piperidone derivatives efficiently.
Chapter II
Gold(I)-catalyzed [3+2]-annulations of α-aryl diazoketones with trisubstituted alkenes of substituted-1,3-butandienes affording the furan derivatives. In the mechanism, α-aryl diazoketones will turn into α-oxo gold carbenes. Afterwards, diene compounds as nucleophile attacks the gold carbene intermediates forming a allyl cation intermediates. Finally, the reaction proceeds cyclization and delivers the useful furan structure.
Chapter I
[1] (a) Thome´, I.; Nijs , A.; Bolm, C. Chem. Soc. Rev. 2012, 41, 979–987. (b) Crabtree, R. H. Chem. Rev. 2015, 115, 1, 127–150.
[2] Lee. J.; Chen, L.; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019−1065.
[3] Kang, J. Y.; Bugarina, A.; Connell, B. T. Chem. Commun. 2008, 3522-3524.
[4] Banks, R. E.; Barlow, M. G.; Haszeldine, R. N. J. Chem. Soc. 1965, 4714-4718.
[5] Vasella, A.; Zhang, F. Helv. Chim. Acta. 2007, 90, 2315-2329.
[6] (a) Sasaki, T.; Ishibashi, Y.; Ohno, M. Chem. Lett. 1983, 12, 863-866. (b) Momiyama, N.; Yamamoto, H. Org. Lett. 2002, 4, 3579-3582.
[7] (a) Maji, B.; Yamamoto, H. J. Am. Chem. Soc. 2015, 137, 15957-15963. (b) Courant, J. Pous, T.; Bernadat, G.; Iorga, B. I.; Blanchard, F.; Masson, G. J. Am. Chem. Soc. 2015, 137, 11950-11953.
[8] Chen, C.‐N.; Liu, R. S. Angew. Chem. Int. Ed. 2019, 58, 9831 –9835.
[9] Chen, C. H.; Tsai, Y.C.; Liu, R. S. Angew. Chem. Int. Ed. 2013, 52, 4599-4603.
[10] Dochnahl, M.; Fu, Gregory C. Angew. Chem. Int. Ed. 2009, 48, 2391 –2393.
[11] Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442-1443.
[12] (a) Barr, D. A.; Haszeldine, R. N. J. Chem. Soc. 1955, 1881-1889. (b) Hoffmann, R. W.; Bressel, U.; Gehlhaus, J.; Häuser, H. Chem. Ber. 1971, 104, 873 – 885. (c) Ginsburg, V. A.; Medvedev, A. N.; Lebedeva, M. F.; Martynova, L. L. Zhurnal Organicheskoi Khimii. 1974, 10, 1416-1423. (d) Fokin, A. V.; Rapkin, A. I.; Chili-kin, V. G.; Verenikin, O. V.; Studnev, Yu. N. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya. 1986, 4, 891-898.
Chapter II
[1] (a) Kardile, R. D.; Chao, T. H.; Cheng, M. J.; Liu, R. S. Angew. Chem. Int. Ed. 2020, 59, 10396 –10400. (b) Jadhav, P. D.; Chen, J. X.; Liu, R. S. ACS Catal. 2020, 10, 10, 5840–5845. (c) Skaria, M.; Sharma, P.; Liu, R. S. Org. Lett. 2019, 21, 8, 2876–2879. (d) Raj, A. S. K.; Liu, R. S. Angew. Chem. Int. Ed. 2019, 58,10980 –10984. (e) Sahani, R. L.; Liu, R. S. ACS Catal. 2019, 9, 7, 5890–5896
[2] (a) Shiroodi, R. K.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991–5001. (b) Jim¦nez-NfflÇez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (c) Li, C.; Zeng, Y.; Zhang, H.; Feng, J.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2010, 49, 6413–6417. (2d) Zhang, L. Acc. Chem. Res. 2014, 47, 877–888. (2e) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260–11261. (2f) Solorio-Alvarado, C. R.; Wang, Y.; Echavarren, A. M. J. Am. Chem. Soc. 2011, 133, 11952–11955. (2g) Fang, W.; Song, C. L.; Ma, Y. D.; Zhou, L.; Tung, C. H.; Xu, Z. h. Science Bulletin. 2015, 60, 1479-1492.
[3] Qiana, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677-698.
[4] Fructos, M. R.; Belderrain, T. R.; Fremont, P. d.; Scott, N. M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284 –5288.
[5] Zhang, D.; Xu, G. Y.; Ding, D.; Zhu, C. H.; Li, J.; Sun, J. T. Angew. Chem. Int. Ed. 2014, 53, 11070 –11074.
[6] Briones, J. F.; Davies, H. M. L. Org. Lett. 2011, 13, 3984-3987.
[7] Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916-11919.
[8] Neupane, P.; Xia, L.; Lee, Y. R. Adv. Synth. Catal. 2014, 356, 2566-2574.
[9] Cao, Z. Y.; Wang, X.; Tan, C.; Zhao, X. L.; Zhou, J.; Ding, K. J. Am. Chem. Soc. 2013, 135, 8197-8120.
[10] Lian, Y.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 11940−11943.
[11] Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 13314-13317.
[12] Chen, C. N.; Cheng, W. M.; Wang, J. K.; Chao, T. H.; Cheng, M. J.; Liu, R. S. Angew. Chem. Int. Ed. 2021, 60, 4479 –4484