簡易檢索 / 詳目顯示

研究生: 黃健豪
Jian-Hao Huang
論文名稱: 利用濺鍍法在不同電漿氣體比例下成長氧化鋅做為氫離子感應膜之研究
Study on zinc oxide deposited by sputter in different plasma gas flow rate for hydrogen ion-sensitive membrane
指導教授: 陳建瑞
Jiann-Ruey Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 81
中文關鍵詞: 離子場效電晶體氧化鋅濺鍍EIS結構pH感測器
外文關鍵詞: ISFET, zinc oxide, Sputter, EIS structure, pH sensitivity
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    離子感應場效電晶體(ISFET)為一種結合電化學原理與場效電晶體的微型感測器,利用MOSFET之基本原理,將其金屬閘極以參考電極/電解液/離子感應膜(絕緣層)取代,因此ISFET同時具有離子選擇與場效電晶體元件的特性。
    本論文係以濺鍍法(Sputter)沈積氧化鋅(ZnO)做為氫離子感應膜,藉由通以不同電漿氣體含氧量,在不同基板溫度下,於p-type (100)矽基板上沈積感應薄膜製備ZnO/ Si 之EIS結構,經由C-V量測來探討平能帶電壓(Flat band voltage)變化的關係,以瞭解做為氫離子感應膜的感測響應度。此外,薄膜的特性利用化學分析電子儀(ESCA)、能量散佈光譜儀(EDS)、X光繞射分析與原子力顯微鏡(AFM)做各項的分析。
    由實驗結果發現,在基板溫度在室溫下,氧化鋅薄膜於電漿氣體含氧量35%下,於酸鹼液pH1~pH11範圍所獲得之感應靈敏度及穩定性為最佳,其感測度約為56.61 mV/pH。


    Abstract
    The ion sensitive field effect transistor (ISFET) is a microsensor consists of the theorem of electrochemistry and the characteristic of a field effect transistor. The principle of the MOSFET is be used for ISFET. The metalline gate of the MOSFET is substituted for reference electrode / electrolyte / insulator. Hence, ISFET is a device composed of a ion selective electrode and a MOSFET device.
    In this thesis the zinc oxide membrane has been prepared by sputter, Sputter method as a novel pH-sensitive layer under different plasma gas flow rate (Ar/O) and substrate temperatures. The ZnO membrane was directly deposited on the p-type silicon substrate by sputter to form the ZnO / Si EIS structure. The variations of flat band voltage were reported by C-V measurement to survey the sensitivity of membrane. The characteristics of membrane were measured and analysed by Electron spectroscopy for chemical analysis (ESCA), Energy dispersive spectrometer (EDS), n&k, X-ray diffraction and Atomic force microscopy (AFM), respectively.
    Experimental results show that the fabrication parameters and characteristics of ZnO membrane are determined at plasma gas oxygen percentage 35%, the substrate temperature 25℃ via the EIS structure. There exhibits the best pH response of about 56.61 mV/pH in the range of pH 1-11.

    目錄 摘要………………………………………………………………… I 英文摘要…………………………………………………………… II 致謝………………………………………………………………… III 目錄………………………………………………………………… IV 圖目錄……………………………………………………………… VII 表目錄……………………………………………………………… XI 第一章 序論…………………………………………………… 1 1-1前言……………………………………………………………… 1 1-2 研究動機……………………………………………………… 5 第二章 離子場效電晶體之理論分析…………………… 7 2-1 MOSFET基本理論………………………………………… 7 2-2 MIS結構…………………………………………………… 10 2-3 能士特效應……………………………………………… 19 2-4 界面電化學………………………………………………… 21 2-4-1 電雙層模型………………………………………… 21 2-4-2 表面吸附鍵結模型………………………………… 27 第三章 物理氣相沈積法…………………………………… 32 3-1 薄膜沈積原理………………………………………………… 32 3-2 物理氣相沈積法沈積感應薄膜的方式……………………… 34 3-3 電漿的基本特性……………………………………………… 38 第四章 實驗流程和步驟…………………………………… 41 4-1 實驗流程……………………………………………………… 41 4-1-1 感應的選擇………………………………………… 41 4-1-2 實驗流程圖………………………………………… 43 4-2 EIS結構的製備…………………………………………… 43 4-2-1 基板之準備………………………………………… 43 4-2-2 基板之清洗………………………………………… 43 4-2-3 沈積氧化鋅(ZnO)薄膜………………………… 44 4-2-4 EIS結構之封裝…………………………………… 45 第五章 分析儀器原理與實驗數據討論………………… 49 5-1 原子力顯微鏡分析(AFM)…………………………………… 49 5-2 X光繞射分析(XRD)………………………………………… 52 5-3 能量散佈光譜(EDS)………………………………………… 55 5-4 化學分析電子儀分析(ESCA)…………………………… 57 5-5 C-V量測曲線………………………………………………… 62 5-6 EIS雙層結構研究…………………………………………… 70 第六章 結論……… 74 參考文獻…………………………………………………………… 76

    參考文獻
    [1] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiologoical measurement”, IEEE Transaction on Biomedical Enginnering,BME-17 (1970), pp.70-71.
    [2] W. M. Siu and R. S. C. Cobbold, “Basic properties of the e;ectrolyte-SiO2-Si system:physical and theoretical aspects”, IEEE Transaction Electron Devices, vol. ED-26, NO.11 (1979), pp. 1805-1815.
    [3] C. D. Fung,P. W. Cheung and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Transaction Electron Devices, vol. ED-33, NO.1 (1986), pp.8-18.
    [4] D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl, “Ion sensing devices with silicon nitrde and borosilicate glass insulators”, IEEE Transaction Electron Devices, vol. ED-34 (1987), pp.1700-1706.
    [5] A. Voorthuyzen and P.Bergveld, “Photoelectric effect in Ta2O5-SiO2-Si structures”, Sensors and Actuators B, vol. 1 (1990), pp. 350-353.
    [6] L. Bosse, H. H. Van Den Vlekkert and N. F. De Rooij, “Hysteresis in Al2O3-gate ISFETs”, Sensors and Actuators B, vol. 2 (1990), pp.228-233.
    [7] A. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs”, Sensors and Actuators B, vol. 2 (1992), pp.367-370.
    [8] A. Garde, J. Alderman, W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment”, Sensors and Actuators B, vol. 26 (1995), pp.341-344.
    [9] H. Hara and T. Ohta, “Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor”, Sensors and Actuators B, vol. 32 (1996), pp.115-119.
    [10] D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, “Effect of heat treatment on Ta2O5 sensing membrance for low drift and high sensitivity pH-ISFET”, Sensors and Actuators B, vol. 34 (1996), pp. 350-353.
    [11] M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordo and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique”, Sensors and Actuators B, vol. 35 (1996), pp.228-233.
    [12] M. N. Niu, X. F. Ding and Q. Y. Tong, “Effect of two type of surface sites on the characteristics of Si3N4-gate pH-ISFETs”, Sensors and Actuators B, vol. 37 (1996), pp.13-17.
    [13] T. Mikolajick, R. Kuhnhold and H. Ryssel, “The pH-sensing properties of Ta2O5 films fabricated by metal organic low pressure chemical vapor deposition”, Sensors and Actuators B, vol. 44 (1997), pp.262-267.
    [14] H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on pHPZC and surface potential of tin oxide gate ISFET”, Material Chemistry and Physics, vol. 58 (1999), pp.6-11.
    [15] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrance”, Material Chemistry and Physics, vol. 63 (2000), pp.19-23.
    [16] B. H. Van Der Schoot, H. H. Van Den Vlekkert, N.F. De Rooij, “A Flow injection analysis system with galss-bonded ISFETs fot the simultaneous detection og calcium and potassium ions and pH value”, Sensors and Actuators B, vol. 4 (1991), pp.239-241.
    [17] L. C. Zhong and G. X. Li, “Biosensor based on ISFET for penicillin determination, Sensors and Actuators B, vol. 14 (1993), pp.507-571.
    [18] 武世香、虞惇、王貴華,“化學量感測器,感測器技術”,第一期 (1990), 57~62頁。
    [19] B. D. Liu, Y. K. Su and S. C. Chen, “Ion-Sensitive Field-effect Transistor with silicon nitride for pH sensing”,Int. J. Electronic, vol. 67, NO.1,(1989), pp.59-63.
    [20] B. D. Liu, Y. K. Su and S. C. Chen, “Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing”, Int. J. Electronic, vol. 67, NO1, 1989, 59-63.
    [21] 武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第2期,1992, 51-55。
    [22] P. Bergveld and A.Sibbald , “Analytical and biomedical applications of ionselective field-effect transistors”, Elsevier Science Publishing Company Inc.,New York, ,1988,.
    [23] G. J. Mohr, I. Murkovic, F. Lehmann, C. Haider, and O. S. Wolfbeis, “Application of potential-sensitive fluorescent dyes in anion- and cation-sensitive polymer membranes”, Sensors and Actuators B, 38-39 , 1997, 239-245.
    [24] H. Seo, C. S. Kim, B. K. Sohn, T. Yeow, M. T. Son, and M. Haskard, “ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide”, Sensors and Actuators B, 40,1997, 1-5
    [25] J. W. Fergus, “ The application of solid fluoride electrolytes in chemical sensors”, Sensors and Actuators B, 42,1997, 119-130.
    [26] A. S. Wong, “Theoretical and Experiment Studies of CVD Aluminum Oxide 81As a pH Sensitive Delectric for The Back Contacts ISFET Sensor”, Ph.D.Thesis, Case Western Reserve University, 1985.
    [27] R. E. G. Van, P, Bergveld, “Characterization and Testing of Polymer-Oxide Adhesion to Improve The Packaging Reliability of ISFETs”,J. F. J. Engbersen and D. N. Reinhoudt, Sensors and Actuators B, 23, 1995, 17-26.
    [28] B. H. Van Der Schoot,H. H. Van Den Vlekkert,and N. F. De Rooij, “A Flow Injection Analysis System with Glass-Bonded ISFETs for the Simultaneous Detection of Calcium and Potassium Ions and pH”, Sensors and Actuators B, 4,1994, 239-241.
    [29] C. D. Fung , P. W. Cheung, W. H. Ko, “A Generalized Theory of An Electrolyte-Insulator-Semiconductor Field-Effect Transistor”, IEEE Trans.Electron Devices, vol.ED-33,NO.1,1986, 8-18.
    [30] L. Bousse , J. Shott and J. D. Meindl, “A Preocess for Combined fabricaton ofIon Sensors and COMS Circuit” , IEE Electron Devices Letters,vol 9. NO. 1.January 1988, 44-46.
    [31] C. Dumschat, H. Muller, H. Rautschek, H. J. Timpe, W. Hoffmann, M. P. Pham and J. Huller, “Encapsulation of Chemically Sensitive Field-Effect Transistors With Photocurable Epoxy Resins”, Sensors and Actuators B, 38-39 , 1990,271-276.
    [32] Vianello F., Stefani A., Dipaolo M. L., Rigo A., Lui A., Margesin B., “Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET”, Sensors and Actuators B, vol. 37 (1996), pp.269-282.
    [33] Senillou A., Jaffrezic-Renault N., Martelet C., Cosnier S., “A miniaturized urea sensor based on the integration of both ammonium based urea ENFET and a reference FET in a single chip”, Talanta vol. 50(1) (1999), pp.219-226.
    [34] Kharitonov A. B., Zayats M., Lichtenstein A., Katz E., Willner I., “Enzyme monolayer-functionalized field-effect transistors for biosensor applications”, Sensors and Actuators B, vol. 70 (2000), pp.222-231.
    [35] K. Park, S. Choi, M. Lee, B. Sohn, S. Choi, “ISFET glucose sensor system with fast recovery characteristics by employing electrolysis”, Sensors and Actuators B, vol. 83 (2002), pp.90-97.
    [36] S. Tetsushi, N. Michihiro, K. Mototsugu, N. Keiko, H. Kaku, S. Toshiro, “Immunological Helicobacter pylori urease analyzer based on ion-sensitive field effect transistor”, Sensors and Actuators B, vol. 67 (2000), pp.265-269.
    [37] Emmanuel Selvanayagam Z., P. Neuzil, P. Gopalakrishnakone, U. Sridhar, M. Singh, L. C. Ho, “An ISFET-based immunosensor for the detection of h-bungarotoxin”, Biosens Bioelectron, vol. 17 (2002), pp.821-826.
    [38] V. M. Starodub, N. F. Starodub, “ Electrochemical immune sensors based on the ion-selective field effect transistor for the determination of the level of myoglobin”, The 13th European Conference on Solid-State Transducers, September 12–15 (1999). In: Bartek M. (Editor). (Bio)Chemical Sensors and Systems. The Hague (The Netherlands): Delft University of Technology (1999), pp.185-188.
    [39] S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985).
    [40] Thomas J. Mego, “Guidelines for Interpreting CV Data”, Solid State Technology, May 1990, pp.159-163.
    [41] 電化學原理與方法/胡啟章編著 五南圖書出版股份有限公司 2002
    [42] D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans.,70,1974,1807-1818
    [43] L. Bouss, N. F. Rooij and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, IEEE Trans. Electron Device, ED-30,1983, 1263-1270
    [44] S. Levine and A. L. Smith,Theory of the differential capacity of the oxide/aqueous electrolyte interface , Disc. Faraday Soc., 52, 1971,290-301
    [45] J. A. Davis, R. O. James and J. O. Leckie, Surface ionization and complexation at the oxide/water interface, J. Colloid Interface Sci.,63,1978,480-499
    [46] T. Hiemstra,J. C. M. De Wit and W. H. Van Riemsdijk, Multisite proton adsorption modeling at the solid/solution interface of (hydr) oxide : A new approach , J. Colloid Interface Sci.,133,1989,105-117
    [47] R. E. G. van Hal, J. C. T. Eijkel and P. Bergveld, A novel description of ISFET sensitivity with the buffer capacity and double-layer capacity as key parameters, 82Sensors and Actuators B, 24-25,1995, 201-205.
    [48] 周榮泉、郭文諒,“酸鹼離子感測場效電晶體ISFET元件之模擬與研究”,八十五年度國科會大專學生參與專題研究計畫成果報告,6月(1997),1-149頁。
    [49] 周榮泉,江榮隆,“以WO3為感測膜之離子感測場效電晶體之模擬與研究”,中華醫學工程學刊,Vol. 17(3) (1997),187-197頁。
    [50] D. E Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Faraday I, Vol. 70 (1974), pp. 1807-1818.
    [51] 牛蒙年、丁辛芳、董勤義,“氧化物-電解溶液界面的表面吸附模型研究”,半導體學報,第六期,第17卷 (1996),458-463頁
    [52] J. O. Carlsson, Thin Solid Film (1985), pp.130,261.
    [53] S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of Plasma Processing Technology, Nayes, New Jersey (1990), pp.261-268.
    [54] F. Kaufman, Adv. Chem. Ser. (1969), pp.80.
    [55] V. Dembovsky, Plasma Metallurgy, John Wiley & Sons, New York (1985), pp.14.
    [56] H.-K. Liao et al. , Materials Chemistry and Physics 59 (1999) , pp.6
    [57] L.-L. Chi et al. , Materials Chemistry and Physics 63 (2000) pp.19
    [58] S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985).
    [59] 龔道本,MIS電容器的平能帶電容計算,半導體光電,第一期,第17卷 (1996),第32-34頁。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE