簡易檢索 / 詳目顯示

研究生: 許斐華
論文名稱: Crystallization Behavior of PS-PLLA Block Copolymers from Strong to Weak Segregation
指導教授: 何榮銘
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 104
中文關鍵詞: 結晶性團聯高分子聚苯乙烯與聚左旋乳酸空間侷限尺寸
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In our previous work, crystallization from hard confinement to soft confinement under strong segregation strength in crystallizable block copolymer, poly(styrene)-block-poly(L-lactide) (PS-PLLA) (having Tg,PS ~ 85 °C, Tg,PLLA ~ 45 °C, Tm,PLLA ~ 150 °C), in microphase-separated lamellar morphology has been studied. An undulated morphology induced by crystallization in lamellar structure was observed in the PS13-PLLA24 block copolymer at Tc,PLLA > Tg,PS (i.e. soft confinement). In this study, a series of semicrystalline block copolymers PS-PLLA with lamellar microstructure were synthesized. A variety of PS-PLLA with different molecular weights, namely distinct segregated strength, were obtatined and crystallized from hard confinement (i.e., the crystallization temperature of PLLA (Tc,PLLA) < the glass transition temperature of PS (Tg,PS)) to soft confinement (i.e., Tc,PLLA>Tg,PS), where interesting morphological evolution was studied by transmission electron microscopy (TEM) and time-resolved small angle X-ray scattering (SAXS). A confined morphology for crystallized PS14-PLLA15 (high-molecular-weight samples) was observed at Tc,PLLA < Tg,PS , while at Tc,PLLA > Tg,PS, an undulated morphology was found. The effect of crystallization on microphase-separated lamellae suggests a strong dependence on the confined environments (i.e., Tg effect) justified by the ratio of Tc,PLLA and Tg,PS that plays a critical role in determining the ultimate morphology after the crystallization of PLLA. Compared to Tg effect, the effect of segregation strength on the morphological evolution is insignificant.
    To further examine the effect of segregation strength on morphological evolution, a low-molecular-weight PS04-PLLA05 was synthesized. With the reduction of segregation strength in the PS-PLLA, undulated morphology was observed in both hard and soft confinement. To further examine the undulated morphology, the order-disorder transition temperature (TODT) of PS04-PLLA05 (i.e. low-MW samples) was determined by real-time SAXS heating experiments. The undulation of lamellae in the PS04-PLLA05 samples is initiated by the annealing at which the temperature is close to TODT; suggesting that the extent of thermal fluctuations causes the formation of lamellar undulation instead of crystallization event.
    Furthermore, we explored polymeric crystallization mechanism under various nanoscale confined sizes by varying the molecular weight of PS-PLLA copolymer, namely the confined size. Compared to PLLA homopolymer, a significant variation of maximum crystallization-rate-
    temperature (Tf) of PLLA block crystallized in PS-PLLA block copolymer can be identified because of the one-dimensional confinement effect. Furthermore, the dependence of crystallization halftime (t1/2) on Tc and dPLLA (i.e., confined size) was examined. Similarly, the increase in t1/2 was attributed to retardation of crystallization in PLLA blocks under 1-D confinement. Consequently, a significant decrease in crystallization rate is referred to the variation of confined size. In this study, however, a distinct transformation of isothermal crystallization kinetics, from heterogeneous to homogeneous nucleation, and a transformation in crystallographic orientation, from perpendicular to parallel type were not found even with the reduction of confined size. These results suggest that the confined size in all PS-PLLA block copolymers is not small enough to change the crystallization mechanism.


    In our previous work, crystallization from hard confinement to soft confinement under strong segregation strength in crystallizable block copolymer, poly(styrene)-block-poly(L-lactide) (PS-PLLA) (having Tg,PS ~ 85 °C, Tg,PLLA ~ 45 °C, Tm,PLLA ~ 150 °C), in microphase-separated lamellar morphology has been studied. An undulated morphology induced by crystallization in lamellar structure was observed in the PS13-PLLA24 block copolymer at Tc,PLLA > Tg,PS (i.e. soft confinement). In this study, a series of semicrystalline block copolymers PS-PLLA with lamellar microstructure were synthesized. A variety of PS-PLLA with different molecular weights, namely distinct segregated strength, were obtatined and crystallized from hard confinement (i.e., the crystallization temperature of PLLA (Tc,PLLA) < the glass transition temperature of PS (Tg,PS)) to soft confinement (i.e., Tc,PLLA>Tg,PS), where interesting morphological evolution was studied by transmission electron microscopy (TEM) and time-resolved small angle X-ray scattering (SAXS). A confined morphology for crystallized PS14-PLLA15 (high-molecular-weight samples) was observed at Tc,PLLA < Tg,PS , while at Tc,PLLA > Tg,PS, an undulated morphology was found. The effect of crystallization on microphase-separated lamellae suggests a strong dependence on the confined environments (i.e., Tg effect) justified by the ratio of Tc,PLLA and Tg,PS that plays a critical role in determining the ultimate morphology after the crystallization of PLLA. Compared to Tg effect, the effect of segregation strength on the morphological evolution is insignificant.

    Abstract I Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Self-Assembly 1 1.2 Self-assembly Behavior of Block Copolymers 2 1.3 Crystallization Effect on Semicrystalline Diblock Copolymers 5 1.3.1 Glass Transition Temperature Effect 6 1.3.2 Segregation Strength Effect 7 1.4 Fluctuation Effect on the Morphology of Block Copolymer 10 1.5 Confined Geometry Effect on Crystallization 11 1.6 Spatial Confinement Effect on Crystallization kinetics 12 1.7 Crystalline Orientation under Confinement 15 Chapter 2 Objectives 39 Chapter 3 Experimental 42 3.1 Instruments 42 3.2 Materials 42 3.2.1 Synthesis of PS-PLLA Block Copolymers 42 3.2.2 Preparation of PS-PLLA Diblock copolymers 42 3.3 The Orientation of Lamellar Structure 43 3.3.1 PS14-PLLA15 diblock copolymers (High-MW samples) 43 3.3.2 PS04-PLLA05 diblock copolymers (Low-MW samples) 43 3.4 Transmission Electron Microscopy (TEM) 44 3.5 Synchrotron X-ray Experiments 44 3.6 Differential Scanning Calorimetry (DSC) 46 Chapter 4 Results and Discussion 51 4.1 Lamellar Morphology of PS-PLLA with Various Molecular Weights………………………………………………………...51 4.2 Distinct Segregated Microphase Separation 52 4.3 Thermal Behavior of PS-PLLA Block Copolymers 53 4.4 Crystallization Effects under Distinct Segregated Strength 54 4.4.1 The Morphology of PS14-PLLA15 (High-MW Samples) 54 4.4.2 The Morphology of PS04-PLL05 (Low-MW Samples) 56 4.5 Fluctuation Effects on Morphology of PS-PLLA Block Copolymer 57 4.6 Crystal Orientation under Confinement 58 4.6.1 Crystal Orientation of PS14-PLLA15 58 4.6.2 Crystal Orientation of PS04-PLLA05 61 4.7 Crystallization under Various Nanoscale Confined Sizes 62 Chapter 5 Conclusions 96 Chapter 7 References 98 List of Tables Table 3.1 Molecular characteristics of diblock copolymers and homopolymers. 48 Table 4.1 Long periods of PS-PLLA with different molecular weights 66 Table 4.2 Segregation strength ratios of PS-PLLA with different molecular weights. 67 List of Figures Figure 1.1 Examples of static self-assembly. (a) Crystal structure of a ribosome. (b) Self-assembled peptideamphiphile nanofibers. (c) An array of millimeter sized polymeric plates assembled at a water/perfluorodecalin interface by capillary interactions. (d) Thin film of a nematic liquid crystal on an isotropic substrate. (e) Micrometersized metallic polyhedra folded from planar substrates. (f) A three-dimensional aggregate of micrometer plates assembled by capillary forces. 18 Figure 1.2 Examples of dynamic self-assembly. (a) An optical micrograph of a cell with fluorescently labeled cytoskeleton and nucleus; microtubules ~ 24 nm in diameter) are colored red. (b) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 3.5-inch Petri dish. (c) A simple aggregate of three millimeter-sized, rotating, magnetized disks interacting with one another via vortex-vortex interactions. (d) A school of fish. (e) Concentric rings formed by charged metallic beads 1 mm in diameter rolling in circular paths on a dielectric support. (f) Convection cells formed above a micropatterned metallic support. The distance between the centers of the cells is ~ 2 mm. 19 Figure 1.3 (a) Schematic phase diagram showing the various ‘classical’ BCP morphologies adopted by non-crystalline linear diblock copolymer. The blue component represents the minority phase and the matrix, majority phase surrounds it. (b) Schematic of morphologies for linear ABC triblock copolymer. A combination of block sequence (ABC, ACB, BAC), composition and block molecular weights provides an enormous parameter space for the creation of new morphologies. Microdomains are colored as shown by the copolymer strand at the top, with monomer types A, B and C confined to regions colored blue, red and green, respectively. 20 Figure 1.4 TEM micrographs showing the crystalline morphology of SEBS. 21 Figure 1.5 TEM micrographs of the PEO-b-PS sample after isothermally crystallized at 25oC 22 Figure 1.6 TEM micrographs showing the crystalline morphology of PEO-b-PB. 23 Figure 1.7 TEM micrographs showing the crystalline morphology of PE-b-PEE 24 Figure 1.8 Classification map of crystallization modes in semicrystalline diblocks with rubbery matrices. Open symbols represent samples where the melt mesophase was completely destroyed on cooling (breakout) or where the melt was homogeneous (unconfined); symbols with vertical hatch represent templated crystallization; and filled symbols represent confined crystallization. Circles represent diblocks forming spheres of E; squares represent cylinders. The bold dashed lines are guides to the eye, approximately dividing the region of breakout (bottom) from the region of confinement (top, light hatch) and the region of template crystallization (right center, heavy hatch). 25 Figure 1.9 TEM images of fully crystallized E/SEB after isothermal crystallization at 64 °C for 20 min. (a) (□Nt)c/(□Nt)ODT > 3 : confined morphology; (b) (□Nt)c/(□Nt)ODT < 3 : breakout morphology. SEB matrix is stained dark with RuO4 26 Figure 1.10 TEM images of fully crystallized PE-PMB system, oriented by channel die compression and crystallized on cooling at 10 °C/min: (a) confined cylinder; (b)templated cylinder; (c)breakout. Amorphous E and MB are both stained dark with RuO4. White ovals highlight “rogue” crystals which run between microdomains. 27 Figure 1.11 TEM micrographs of PS-sPP isothermally crystallized at (a) Tc,sPP < Tg,PS; (b) Tc,sPP ~ Tg,PS; and (c) Tc,sPP > Tg,PS 28 Figure 1.12 (a)Competition between the driving fore of crystallization and segregation strength of microphase separation. TEM micrographs of unoriented PS-PLLA samples (b) crystallized at 70 oC (c) crystallized at 100 oC from ordered melt at 160 oC 29 Figure 1.13 Schematic showing the variation of inverse scattering intensity and domain spacing across the order-disorder transition of a block copolymer melt. The mean field transition temperature has been identified operationally as the point where, on heating, the inverse intensity crosses over to a linear dependence on T-1 30 Figure 1.14 Illustration of lamellar deformation by rippling, and the associated changes in scattering patterns, as T □ TODT 31 Figure 1.15 Time course of the integrated SAXS (middle curve) and WAXS (bottom curve) intensities for E/SEB 63 crystallized at 67 oC (insets show regions of integration). The SAXS intensity for the E40 homopolymer, which shows a sigmoidal time evolution, is shown for comparison (top curve, 95 oC, similar half-time) 32 Figure 1.16 Nonisothermal crystallization exotherms of PEO-b-PBs. The cooling rate was 5 °C/min. The inset in the figure plots the freezing temperature (Tf) as a function of fPB. It can be seen that the crystallization kinetics exhibits transitions at the compositions corresponding to the morphological transformation 33 Figure 1.17 ((a) Dependence of half-time of isothermal crystallization on temperature and (b) lamellar thickness, lCPCL, of crystalline PCL stems as a function of Tc for P4VP-PCL BCPs and PCL homopolymers. Horizontal lines denote the confined sizes. The characteristic thicknesses of crystalline PCL stems for BCPs were estimated from plots of inverse crystal lamellar thickness vs melting temperature from evolution of SAXS data. 34 Figure 1.18 TEM micrographs showing the crystalline morphology of SEBS. 35 Figure 1.19 (a) Parallel; (b) Perpendicular orientation in confined cylinder 36 Figure 1.20 (a) Homogeneous/ parallel orientation; (b) homeotropic/ perpendicular orientation in confined lamellar nanostructures 37 Figure 1.21 (a) Three schematic presentations of chains orientation under confinement with various spaces in the P4VP-b-PCL diblock copolymers: (a) dPCL~11nm, (b) dPCL~8.8nm, and (c) dPCL~6nm. 38 Figure 3.1 PS-PLLA double-headed polymerization sequences. 47 Figure 3.2 Illustration of rimming flow and the orientation of lamellar microstructure 49 Figure 3.3 Geometry of the mechanical sheared PS04-PLLA05 copolymers with a lamellar phase morphology 50 Figure 4.1 (a) TEM morphology; (b) The corresponding azimuthally integated one-dimensional SAXS profile of PS14-PLLA15 (fPLLAv = 0.49) after quenching from 160 °C 68 Figure 4.2 (a) TEM morphology; (b) The corresponding azimuthally integated one-dimensional SAXS profile of PS07-PLLA11 (fPLLAv = 0.58) after quenching from 160 °C. 69 Figure 4.3 (a) TEM morphology; (b) The corresponding azimuthally integated one-dimensional SAXS profile of PS04-PLLA05 (fPLLAv = 0.51) after quenching from 160 °C 70 Figure 4.4 (a) TEM morphology; (b) The corresponding azimuthally integated one-dimensional SAXS profile of PS06-PLLA05 (fPLLAv = 0.37) after quenching from 160 °C 71 Figure 4.5 One-dimensional SAXS profile of PS-PLLA copolymers with different molecular weights 72 Figure 4.6 DSC heating thermograms of (a) PS14-PLLA15 (fPLLAv = 0.49) and (b) PS04-PLLA05 (fPLLAv = 0.51). The heating rate is 10oC/min 73 Figure 4.7 DSC heating thermograms of (a) PS14-PLLA15 (fPLLAv = 0.49) and (b) PS04-PLLA05 (fPLLAv = 0.51). The heating rate is 10oC/min 74 Figure 4.8 DSC thermograms of (a) isothermal crystallization; (b) melting curves for PS14-PLLA15 (fPLLAv = 0.49) at different crystallization temperatures. On the basic reciprocal time of exothermic peak, the maximum crystallization rate is estimated at ca. 95 oC. The melting point increases with increasing crystallization temperature 75 Figure 4.9 DSC thermograms of (a) isothermal crystallization; (b) melting curves for PS04-PLLA05 (fPLLAv = 0.51) at different crystallization temperatures. On the basic reciprocal time of exothermic peak, the maximum crystallization rate is estimated at ca. 110 oC. The melting point increases with increasing crystallization temperature. 76 Figure 4.10 Crystallization of PS-PLLA from hard to soft confinement under strong segregation strength 77 Figure 4.11 (a) TEM morphology; (b) one-dimensional SAXS profile of PS14-PLLA15 (fPLLAv = 0.49) isothermally crystallized at 70oC for 150 min from ordered melt at 160 oC. (Tc,PLLA = 70oC < Tg,PS = 87oC, under hard confinement) 78 Figure 4.12 (a) TEM morphology; (b) one-dimensional SAXS profile of of PS14-PLLA15 (fPLLAv = 0.49) isothermally crystallized at 100oC for 150 min from ordered melt at 160 oC. (Tc,PLLA = 100oC > Tg,PS = 87oC, under soft confinement) 79 Figure 4.13 (a) TEM morphology; (b) one-dimensional SAXS profile of of PS04-PLLA05 (fPLLAv = 0.51) isothermally crystallized at 70oC for 600 min from ordered melt at 160 oC. (Tc,PLLA = 70oC < Tg,PS = 87oC, under hard confinement) 80 Figure 4.14 (a) TEM morphology; (b) one-dimensional SAXS profile of PS04-PLLA05 (fPLLAv = 0.51) isothermally crystallized at 100oC for 200 min from ordered melt at 160 oC. (Tc,PLLA = 100oC > Tg,PS = 84oC, under soft confinement). 81 Figure 4.15 Real-time temperature dependence of SAXS profiles for PS04-PLLA05 in the heating process at various temperatures. 82 Figure 4.16 The plots of Im-1 versus 1/T for PS04-PLLA05 83 Figure 4.17 X-ray scattering patterns of oriented PS14-PLLA15 samples isothermally crystallized at 70 oC from ordered melt. 2-D SAXS obtained when X-ray beam is along (a) X-direction; (b) Y-direction; (c) Z-direction; 2-D WAXD along (d) X-direction; (e) Y-direction; (f) Z-direction. 84 Figure 4.18 (a) Azimuthal profiles for 2-D WAXD pattern of oriented PS14-PLLA15 samples isothermally crystallized at 70 oC from ordered melt along X-direction and Y-direction, respectively. (b) Schematic illustration of corresponding reflections 85 Figure 4.19 X-ray scattering patterns of oriented PS14-PLLA15 samples isothermally crystallized at 100 oC from ordered melt. 2-D SAXS obtained when X-ray beam is along (a) X-direction; (b) Y-direction; (c) Z-direction; 2-D WAXD along (d) X-direction; (e) Y-direction; (f) Z-direction 86 Figure 4.20 Azimuthal profiles for 2-D WAXD pattern of oriented PS14-PLLA15 samples isothermally crystallized at 100 oC from ordered melt along X-direction and Y-direction, respectively 87 Figure 4.21 Molecular disposition of PLLA crystalline chain corresponding to the lamellar interface for PS14-PLLA15 block copolymer 88 Figure 4.22 X-ray scattering patterns of oriented PS04-PLLA05 samples isothermally crystallized at 70 oC from ordered melt. 2-D SAXS obtained when X-ray beam is along (a) X-direction; (b) Y-direction; (c) Z-direction; 2-D WAXD along (d) X-direction; (e) Y-direction; (f) Z-direction 89 Figure 4.23 X-ray scattering patterns of oriented PS14-PLLA15 samples isothermally crystallized at 100 oC from ordered melt. 2-D SAXS obtained when X-ray beam is along (a) X-direction; (b) Y-direction; (c) Z-direction; 2-D WAXD along (d) X-direction; (e) Y-direction; (f) Z-direction 90 Figure 4.24 X-ray scattering patterns of oriented PS04-PLLA05 samples isothermally crystallized at 100 oC from ordered melt. 2-D SAXS obtained when X-ray beam is along (a) X-direction; (b) Y-direction; (c) Z-direction; 2-D WAXD along (d) X-direction; (e) Y-direction; (f) Z-direction 91 Figure 4.25 Azimuthal profiles for 2-D WAXD pattern of oriented PS04-PLLA05 samples isothermally crystallized at 100 oC from ordered melt along X-direction and Y-direction, respectively 92 Figure 4.26 Non-isothermal crystallization of (a) PLLA homopolymers and (b) PS-PLLA block copolymers with different molecular weight 93 Figure 4.27 Isothermal crystallization of PS-PLLA block copolymers with different confined sizes 94 Figure 4.28 Development of crystallinity during isothermal crystallization at different Tc from hard confinement and soft confinement in all PS-PLLA block copolymers. (a) Tc is at 70 oC (b) Tc is at 100 oC. The relative crystallinity was deduced from the enthalpy change during dynamic isothermal crystallization in a DSC 95

    1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
    3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
    7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
    8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
    9. Lodge, T. P. Macromol Chem Phys 2003, 204, 265.
    10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
    12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
    14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
    15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
    16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    17. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
    18. Adedeli, A.; Ho, R.-M.; Giles, D. W.; Hajduk, D. A.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Polym. Phys. 1997, 35, 2857.
    19. Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
    20. Yang, Y.-W.; Tanodekaew, S.; Mai, S.-M.; Booth, C.; Ryan, A. J.; Bras, W.; Viras, K. Macromolecules 1995, 28, 6029.
    21. Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phy. Rev. B 1999, 60, 10022.
    22. Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
    23. Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
    24. Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321.
    25. Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 247.
    26. Liu, L.-Z.; Yeh, F.; Chu, B. Macromolecules 1996, 29, 5336.
    27. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
    28. Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
    29. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
    30. Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
    31. Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2053.
    32. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, G.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
    33. Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
    34. Zhu, L.; Cheng, S. Z.-D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
    35. Zhu, L.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Cheng, S. Z.-D.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Liu, L.; Lotz, B. Macromolecules 2001, 34, 1244.
    36. Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C.; Booth, C. Macromolecules 2002, 35, 3614.
    37. Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
    38. Sun, L.; Zhu, L.; Ge, Q.; Quirk, R. P.; Xue, C.C.; Cheng, S. Z. D.; Hsiao, B. S.; Avila-Orta C. A.; Sics, I.; Cantino, M. E. Polymer 2004, 45, 2931.
    39. Koo, C. M.; Wu, L.; Lim, L. S.; Mahanthappa, M. K.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2005, 38, 6090.
    40. Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.; Macromolecules 2004, 37, 3689.
    41. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur. Polym. J. 1992, 28, 1219.
    42. Kofinas, P.; Cohen, R. E. Macromolecules 1994, 27, 3002.
    43. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
    44. Mai, S.-M.; Fairclough, J. P. A.; Viras, K.; Gorry, P. A.; Hamley, I. W.; Ryan, A. J.; Booth, C. Macromolecules 1997, 30, 8392.
    45. Hillymer, M. A.; Bates, F. S. Macromol. Symp. 1997, 117, 121.
    46. Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
    47. Chen, H.-L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
    48. Chen, H.-L.; Wu, J. C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
    49. Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
    50. Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
    51. Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z.-D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L.; Polymers 2001, 42, 9192.
    52. Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
    53. Ho, R.-M.; Chung, T. -M.; Kuo J. -C.; Tsai, J. -C.; Hsiao, B. S.; Sics, I. Macromo.l Rapidly Commun. 2005, 36, 107.
    54. Chung, T. -M.; Ho, R.-M.; Kuo J. -C.; Tsai, J. -C.; Hsiao, B. S.; Sics, I. Macromolecules 2006, 36, 2739.
    55. Leibler, L. Macromolecules 1980, 13, 1602.
    56. Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697.
    57. Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2632..
    58. Bates, F. S.; Rosedale, J. H.; Fredrickson, G. H. J. Chem. Phys. 1990, 92, 6255.
    59. Bates, F. S.; Rosedale, J. H.; Macromolecules 1995, 28, 1429.
    60. Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825.
    61. Ogawa, T.; Sakamoto, N.; Hashimoto, T.; Han, C. D.; Baek, D. M. Macromolecules 1996, 29, 2113.
    62. Hashimoto, T.; Sakamoto, N.; Ogawa, T.; Han, C. D.; Baek, D. M. Amundson, K.; Helfand, E. Macromolecules 1993,26, 1324.
    63. Sun, Y.-S.; Chung, T.-M.; Li, Y.-J.; Ho, R.-M.; Ko, B.-T.; Jeng, U.-S.; Bernard Lotz. Macromolecules 2006, 39, 5782.
    64. Sun, Y.-S.; Chung, T.-M.; Li, Y.-J.; Ho, R.-M.; Ko, B.-T.; Jeng, U.-S.; Macromolecules 2007, 40, 6778.
    65. Park, C.; De Rosa, C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 7931.
    66. Loo, Y.-L.; Register, R. A.; Adamson, D. H Macromolecules 2000, 33, 8361.
    67. Rangarajan, P.; Register, R. A.; Fetters, L. J. Macromolecules 1993, 26, 4640.
    68. Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecules 2001, 34, 7009.
    69. Craven, J. R.; Hao, Z.; Booth, C. J. Chem. Soc., Faraday Trans. 1991, 87, 1183.
    70. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur. Polym. J. 1992, 28, 1219.
    71. Viras, K.; Viras, F.; Campbell, C.; King, T. A.; Booth, C. J. Chem. Soc., Faraday Trans. 1987, 83, 917.
    72. Yeates, S. G.; Booth, C. Makromol. Chem. 1985, 186, 2663.
    73. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature (London) 2000, 405, 433.
    74. Reiter, G.; Gastelein, G.; Hoerner, P.; Riess, Blumen, A.; Sommer, J.-U. Phys. ReV. Lett. 1999, 83, 3844.
    75. Ho, R.-M.; Hsieh, P.-Y.; Tseng, W.-H.; Lin, C. C.; Huang, B. H. Macromolecules 2003, 36, 9085.
    76. Tsuji, H.; Ikada, Y. Polymer 1995, 36, 2709.
    77. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    78. Hoogsten, W.; Postema, A. R.; Pennings, A. J.; ten Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23, 634.
    79. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
    80. Khan, S. A.; Larson, R. G. Rheol. Acta 1991, 30, 1.
    81. Lee, H. H.; Register, R. A.; Hajduk, D. A.; Gruner, S. M. Polym. Eng. Sci. 1996, 36, 1414.
    82. Chen, W. Y.; Zheng, J. X.; Cheng, S. Z. D.; Li, C. Y.; Huang, P.; Zhu, L.; Xiong, H.; Ge, Q.; Guo, Y.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L. Phys. Rev. Lett., 2004, 93, 28301.
    83. Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A.-C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE