簡易檢索 / 詳目顯示

研究生: 姜義峰
論文名稱: 以液相微萃取法搭配多元素石墨爐原子吸收光譜儀偵測水樣中的鉛、鎘元素
Determination of lead and cadmium in water samples by liquid-phase microextraction coupled with graphite furnace atomic absorption spectrometry.
指導教授: 黃賢達
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 液相微萃取法石墨爐原子吸收光譜儀鈀修飾劑
外文關鍵詞: lead, cadmium, liquid-phase microextraction, GFAAS, palladium chemical modifier
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三液相動態微萃取法(dynamic liquid-liquid-liquid microextraction, LLLME)結合多元素石墨爐原子吸收光譜儀偵測水樣中的鉛、鎘元素。利用有機相中的螯合劑(dithizone),螯合水樣裡的重金屬,反萃重金屬至受層(acceptor phase)硝酸中,再與鈀修飾劑一同注入石墨爐內進行偵測。與傳統液液萃取或固相萃取法相比,此法較簡便,溶劑用量大幅減少;相較於固相微萃取法,則具有耗材花費較少的優點。石墨爐原子吸收光譜儀的最佳化溫控程式與鈀修飾劑用量分別為:灰化溫度600℃、原子化溫度2000℃;5μg鈀。探討各種可能影響萃取效率的變因包括:有機溶劑的選擇、予層(donor phase)水樣pH值、受層(acceptor phase)硝酸濃度、螯合劑用量、樣品攪拌速率與萃取時間。在最佳化條件下(1% dithizone/4-nitro-m-xylene萃取液、予層水樣pH=5、受層硝酸濃度10% 、攪拌速率700r.p.m.、萃取時間40分鐘),鉛、鎘的偵測極限分別為0.032 ng/mL、0.037 ng/mL;精密度是以添加低濃度分析物在真實樣品(0.1 ng/mL Pb、0.2 ng/mL Cd),重複分析5次所得相對標準偏差(RSD)表示之。求得Pb、Cd精密度分別為7%、4%。未來工作為添加低濃度待測物於真實樣品,計算相對回收率,若其值落在100±15% 的範圍內,即可用檢量線進行定量。


    In this thesis, we combined dynamic liquid-liquid-liquid microextraction (LLLME) with multi-elements graphite furnance atomic absorption spectrometry (GFAAS) to determine trace lead and cadmium in water samples. In the extraction step, two elements in 30 mL of the water sample which adjusted to pH 5 (donor phase) were extracted into an organic film containing a chelating agent (1 % dithizone) in 4-nitro-m-xylene and then back-extracted to 5 μL, 10 % nitric acid solution (acceptor phase). 4.5 μL acceptor phase and 0.5 μg palladium (chemical modifier) were injected into the graphite tube by syringe simultaneously. The continual movement of organic and acceptor phases not only resulted in a renewable organic film but also enhanced the enrichment factor. Under the optimized conditions (ashing temp. 600℃, atomization temp. 2000℃, stirring rate 700 r.p.m., extraction time 40 minutes), the detection limits and relative standard deviations (RSDs) were 0.032 ng/mL, 0.037 ng/mL ; 7%, 4% for lead and cadmium, respectively.

    第一章 緒論 ……………………………………………………………………1 1-1 分析物簡介 …………………………………………………………………1 1-1-1 鉛 ……………………………………………………………………………2 1-1-2 鎘 ……………………………………………………………………………5 1-2 微量重金屬元素的分析方法之回顧與探討 ………………………………7 1-3 多元素石墨爐原子吸收光譜儀 ……………………………………………8 1-4 化學修飾劑…………………………………………………………………11 1-4-1 鈀修飾劑的應用……………………………………………………………12 1-4-2 氫氣的使用…………………………………………………………………13 1-4-3 鎂修飾劑的應用……………………………………………………………14 1-5 微量元素前濃縮方法………………………………………………………14 1-6 液相微萃取法………………………………………………………………16 1-6-1 單滴微萃取法………………………………………………………………16 1-6-2 中空纖維液相微萃取法……………………………………………………17 1-6-3 溶劑棒微萃取………………………………………………………………20 1-6-4 薄膜輔助溶劑萃取…………………………………………………………21 1-6-5 分散式液液微萃取法………………………………………………………21 1-7 本論文研究方向……………………………………………………………22 第二章 實驗…………………………………………………………………………24 2-1 試藥…………………………………………………………………………24 2-2 儀器裝置……………………………………………………………………24 2-3 藥品純化及器皿清洗………………………………………………………25 2-4 實驗步驟……………………………………………………………………25 第三章 結果與討論…………………………………………………………………27 3-1 螯合劑萃取體系……………………………………………………………27 3-2 三液相動態微萃取機制……………………………………………………27 3-3 最佳化條件探討……………………………………………………………29 3-3-1 最佳溫控程式的尋找………………………………………………………29 3-3-2 鈀修飾劑用量………………………………………………………………29 3-3-3 萃取溶劑的選擇……………………………………………………………30 3-3-4 予層水樣pH值的影響 ……………………………………………………31 3-3-5 螯合劑用量…………………………………………………………………32 3-3-6 受層硝酸濃度的影響………………………………………………………32 3-3-7 樣品攪伴速率………………………………………………………………32 3-3-8 萃取時間……………………………………………………………………33 3-3-9 偵測極限、精密度…………………………………………………………33 3-4 未來的實驗方向與展望……………………………………………………34 第四章 結論…………………………………………………………………………35 參考資料 ……………………………………………………………………………36 表目錄 表(一) 四種儀器的偵測極限比較…………………………………………………48 表(二) 側向加熱石墨爐與縱向加熱石墨爐原子吸收光譜儀原子化溫度比較…49 表(三) 數種商業化原子吸收光譜儀之比較………………………………………50 表(四) 常用化學修飾劑……………………………………………………………51 表(五) 儀器實驗參數………………………………………………………………52 表(六) 實驗偵測極限與精密度……………………………………………………53 表(七) 不同液相微萃取法應用於Pb、Cd萃取之比較……………………………54 圖目錄 圖(一) 二度空間光譜形成示意圖………………………………………………55 圖(二) SIMA 6000光學系統設計 ………………………………………………56 圖(三) 固態光電半導體偵測器與光電倍增管量子效率比較…………………57 圖(四) 側向加熱式石墨爐原子化器……………………………………………58 圖(五) 以中空纖維保護有機層的兩液相微萃取法裝置圖……………………59 圖(六) 實驗裝置示意圖…………………………………………………………60 圖(七) 雙硫腙與其金屬錯合物結構圖…………………………………………61 圖(八) 三液相動態微萃取法萃取機制示意圖…………………………………62 圖(九) 灰化溫度對原子吸收訊號之影響………………………………………63 圖(十) 原子化溫度對原子吸收訊之影響………………………………………64 圖(十一) Pd修飾劑用量對原子吸收訊號之影響…………………………………65 圖(十二) 有機溶劑對萃取效率之影響……………………………………………66 圖(十三) Donor phase pH值對萃取效率之影響…………………………………67 圖(十四) Dithizone濃度對萃取效率之影響 ……………………………………68 圖(十五) 硝酸濃度對萃取效率之影響……………………………………………69 圖(十六) 樣品攪拌速率對萃取效率之影響………………………………………70 圖(十七) 萃取時間對萃取效率之影響……………………………………………71

    [1] J.J. Dulka and T.H. Risby, Anal. Chem., 1976, 48, 640A.

    [2] P.J. Craig, “Organometallic Compounds in the
    Enviroment Principles and Reaction”, John Wiley & Son
    Inc., New York, 1986.

    [3]唐瑞菁,船隻使用含有機錫的漆料對沿海生態的影響,環境科學
    技術教育專刊,第11期,66,1996年12月。

    [4] A. M. Caricchia, S. Chiavarini, C. Cremisini, R.
    Morabito and R. Scerbo, “Influence of Storage Condition
    on the Determination of Organotin in Mussels”, Anal.
    Chim. Acta, 286, 329, 1994.

    [5] C. J. Evans and S. Karpel, “Organotin Compounds in
    Modern Technology”, Elsenier Science Publishers,
    Amsterdam, 1985.

    [6] A.O. Valkirs, P.F. Seligmen, P.M. Stang and V. Homer, “Measurement of Butyltin Compounds in San Diego Bay”,
    Mar. Pollut. Bull., 17, 319, 1986.

    [7] H. Harion and M. Fukushima, “Simultaneous
    Determination of Butyltin and Phenyltin Compounds in the
    Aquatic Enviroment by Cas Chromatography”, Anal. Chim.
    Acta., 264, 91, 1992.

    [8]張簡振銘,氣相層析/火燄光度偵測法應用於底泥中微量有機錫
    的分析,私立東海大學應用化學研究所碩士論文,1995年。

    [9] J.A. Stab, W.P. Cofino, B.V. Hattum, V.A. Brinkman and
    Fresenius, J. Anal. Chem., 347, 247, 1993.

    [10]李東異,台灣西部沿岸生物體有機錫分析,國立台灣大學海洋
    研究所碩士論文,1997年。

    [11]陳雍程,土壤樣品鉛、鎘的逐步萃取,國立中興大學環境工程
    學系,碩士論文,2000年。

    [12]陳麗如,物質流-鎘在台灣生活圈中之流向與流量初探,國立台
    灣大學環境工程學研究所,碩士論文,2002年。

    [13]中西實用內科學,啟業書局,1978年,p351-369。

    [14] C. Lu Frank 原著,劉宗榮、康照洲等編譯,Basic Toxicology(基
    礎毒理學),藝軒圖書出版社,1996年,p344-351。

    [15]何敏夫,臨床化學概論,合記圖書出版社,2002年,p449。

    [16]陳吉平譯,最新毒理學,合記圖書出版社,2000年,p255-269。

    [17] WHO Lead, “Environmental Health Criteria 3 Geneva”, World Health Organization, 1977.

    [18]李勇進、譚延輝等譯,醫用藥理學,九州圖書文物有限公司,
    1989年,p653。

    [19]許鴻源,礦物性中藥之研究,國立中國醫藥研究所,1975年,p19、
    40、53。

    [20]詹智遠,環境微生物處理重金屬之研究,國立東華大學生物技術
    研究所,碩士論文,1999年。

    [21]連森興,中藥成藥中金屬濃度與人體暴露評估,以苗栗地區為例,
    台北醫學院公共衛生學研究所,碩士論文,2000年。

    [22]莊一全,以原子吸收光譜法測定中藥及子宮頸黏液之微量元素研
    究,高雄醫學大學醫學研究所,博士論文,2001年。

    [23]林蕙雅,安胎劑中鉛、鎘、鉻、砷元素含量之分析探討,朝陽科技大學應用化學系,碩士論文,2001年。

    [24]林聖富、黃榮茂、楊得仁、王禹文編譯,化學化工百科辭典,曉園出版社,1992年。

    [25]詹武忠、楊肇政、鄭阿全編著,污染防治,高立圖書有限公司,1994年。

    [26]朱子賢,中醫門診病患與一般民眾服用中藥之金屬暴露與健康風
    險評估,台北醫學院公共衛生學研究所,碩士論文,1999年。

    [27]陳錕榮,重金屬污染場址調查與復育技術評估之研究,雲林科技
    大學環境與安全工程技術研究所,碩士論文,2000年。

    [28]楊婷卉,逢甲大學校園及周邊地面街塵特性分析,逢甲大學土木
    及水利工程研究所,碩士論文,2000年。

    [29]陳松甫,碳化農業廢棄物改良水田重金屬污染之可行性研究,國立中興大學土壤環境科學系,碩士論文, 2002年。

    [30] L. Friberg , G. F. Nordberg , V. B. Vouk, “Handbook on the
    toxicology of metals”, Elsevier/North-Holland Biomedical Press, Amsterdam, New York ,Oxford ,452-484 ,1979.

    [31] H. B. Elkins, “The Chemistry of Industrial Toxicology”, John Wiley and Sons, New York, 1959.

    [32] M. Carty, “Trace Inorganic Material, Chemistry for Environmental Engineering”, Kein Tai Book Publishers Inc. Taipei, Taiwan ,548-552 ,1982.

    [33]陳慶隆,酸鹼值、液固比與醋酸鹽濃度對飛灰中金屬溶出之影響,
    國立中興大學環境工程學系,碩士論文,2001年。

    [34] E. I. Krajnc et al ,National Institute of Public Health and Environmental Protection, 1987.

    [35] World Health Organization, “Toxicological evaluation of certain food additives and contaminants”, Cambridge Unibersity Press, 163, 1989.

    [36] Cadmium. Geneva, World Health Organization, 1992.

    [37]歐育憲,土壤中重金屬污染物之生物有效性意義研究,逢甲大學
    土木及水利工程研究所,碩士論文,1999年。

    [38]王嘉媜,活性氧分子在鎘及汞誘發人類正常肺細胞MRC-5凋亡之作用探討,台北醫學院醫學研究所,碩士論文,1999年。

    [39]郭美君,鎘所誘導水稻幼苗毒害與氧化逆境間關係之研究,國立台灣大學農藝學系研究所,碩士論文,2003年。

    [40]梁曉芳,鎘誘導人類正常肺細胞MRC-5細胞凋亡之探討,台北醫學大學醫學研究所,碩士論文,2002年。

    [41]吳明晃,以化學置換程序處理水溶液中含鎘、汞離子之研究,國
    立台灣科技大學化學工程系,碩士論文,1999年。

    [42]何子潔,重金屬鎘在布袋蓮中的隔離與輸送之研究,國立臺灣大學農業化學研究所,碩士論文,2001年。

    [43]林保瑞,銅、鎘在幾種台灣土壤中脫附性之探討,屏東科技大學環境工程與科學系,碩士論文,2001年。

    [44]施伶穎,“環境污染與健康風險之網路教育,以重金屬與水產食品
    為例”,台北醫學院公共衛生學研究所,碩士論文,2001年。

    [45]尹順君,鎘的毒性研究:脂質過氧化作用與硒的抗氧化效應之探討,高雄醫學大學醫學研究所,博士論文,2000年。

    [46] X. R. Wang, Z. X. Zhuang, D. H. Sun, J. X. Hong, X. H. Wu, F. S. C.
    Lee, M. S. Yang, H. W. Leung, “Trace metals in traditional Chinese medicine:A preliminary study using ICP-MS for metal determination and speciation”, At Spectrum, 1999, 20(3), 86.

    [47] B. Buckley, W. Fang, C. Gilmartin, W. Johnson, Presented at FACSS XXIII, Kansas City, Mo, USA, 1996, Sep. 29-Oct.4.

    [48] X. D. Tian, Z. X. Zhuang, B. Chen, X. R. Wang, “Determination of arsenic speciation by capillary electrophoresis and ICP-MS using a movable reduction bed hydride generation system”, At. Spectrum, 1999, 20(4), 127.

    [49] A. H. Osteras, M. Grger, “Accumulation of and interactions between calcium and heavy metals in wood and bark of Picea abies”, J. Plant Nutr. Soil Sc., 2003, 246, 166.

    [50] C. Dietz, T. Perez-Corona, Y. Madrid-Albarran and C. Camara, “SPME for on-line volatile organo-selenium speciation”, J. Anal. At. Spectrum, 2003, 18, 467.

    [51] T, Matousek, R. E. Sturgeon, “Surfactant assisted chemical vapour generation of silver for AA)S and ICP-OES:A mechanistic study”, J. Anal. At. Spectrum, 1980, 52, 182.

    [52] J. V. Headley, W. Massiah, D. Laberge, J. R. Purdy, “Rapid screening for mancozeb in exposure trials by inductively coupled plasma-atomic emission spectrometric determination of manganese”, J. AOAC Int., 1996, 79(5), 1184.

    [53] K. Kahen, A. Strubinger, J. R. Chirinos and A. Montaser, “Direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry for analysis of petroleum samples”, Spectrum. Acta, 2003, 58(B), 397.

    [54] M. Dogutan and H. Filik, I. Tor, “Preconcentration and speciation of chromium using a melamine based polymeric sequestering succinic acid resin:its application for Cr(VI)and Cr(III)determination in wastewater”, Talanta, 2003, 59, 1053.

    [55] A. Bertolino, M. Frye, J. H. Callicott, V. S. Mattay, R. Rakow, J. Shelton-Repella, R. Post and D. R. Weinberger, “Neuronal pathology in the hippocampal area of patients with bipolar disorder:A study with proton magnetic resonance spectroscopic imaging”, Biol. Psychiat., 2003, 53, 906.

    [56] S. D’Angeli, P. Lauri, W. Dewitte, H. Van Onckelen and E. Caboni, “Factors affecting in vitro shoot formation from vegetative shoot apices of apple and relationship between organogenic response and cytokinin localization”, Plant. Biosyst., 2001, 135, 95.

    [57] Y. Ke, J. T. Coyle, N. S. Simpson, S. A. Gruber, P. F. Renshaw, D. A. Yurgelun-Todd, “Frontal brain NAA T2 values are significantly lower in schizophrenia”, Schizophr. Res., 2003, 60, 242.

    [58] J. F. Tyson, “Flow Injection Atomic Spectrometry”, Spectrochim. Acta Rev., 1991, 14, 169-233

    [59] J. N. King, J. S. Fritz, “Concentration of Metal Ions by Complexation with Sodium bis(2-hydroxyethyl)dithiocarbamate and Sorption on XAD-4 Resin”, Anal. Chem., 1985, 57, 1016-1020.

    [60] Z. Fang, S. Xu, G. Tao, “Developments and Trends in Flow Injection Atomic Absorption Spectrometry”, J. Anal. At. Spectrum, 1996, 11, 1-24.

    [61] B. Radziuk, G. Rödel, H. Stenz, H. Becker-Ross, S. Florek, “Spectrometer System for Simultaneous Multi-Element Electrothermal Using Line Sources and Zeeman-Effect Background”, J. Anal. At. Spectrum, 1995, 10, 127.

    [62] K. Yasuda, T. Okumoto, A. Yonetani, H.Yamada, K. Ohishi, In Colloquium Atomspektrometrische Spurenanlytik; Welz, B. Ed; Perkin-Elemer GmbH: Uberlingen, 1989, Vol. 5, 133.

    [63]葉榮泰, 同時多元素分析-石墨爐原子吸收光譜儀之設計原理與應用,科儀新知,第 18 卷第 4 期,1997年二月,p50–58。

    [64] B. Radziuk, G. Rödel, M. Zeiher, S. Mizuno, K. Yamamoto, “Solid-State Detector for Simultaneous Multi-Element Electrothermal Atomic Absorption Spectrometry with Zeeman-Effect Background Correction”, J. Anal. At. Spectrom., 1995, 10, 415.

    [65] M. Karplus, R. N. Poter, “Atoms and Molecules”, 2nd ed., Mei-Ya INC, 1975.

    [66] J. M. Harnly, “Instrumentation for Simultaneous Multi-Element Atomic Absorption Spectrometry with Graphite Furnace Atomization”, J. Anal. Chem., 1996, 355, 501-509.

    [67] G. Carnrick, G. Schlemmer and W. Slavin, “American Laboratory”, 1991, 2, 120.

    [68] G. Schlemmer, B. Welz, “Scanning electron microscopy studies on surfaces from electrothermal atomic absorption spectrometry-III. The lanthanum modifier and the determination of
    phosphorus”, Spectrochimica Acta, 1986, Vol. 41B, No. 11, 1157.

    [69] G. Weibust, F. J. Langmyhr and Y. Thomassen, “Thermal stabilization of inorganic and organically- bound tellurium for electrothermal atomic absorption spectrometry”, Anal. Chim. Acta, 1981, 128, 23.

    [70] L. Z. Jin, Z. M. Ni, Can. J. Spectrosc., 1981, 26, 219.

    [71] X. Q. Shan, M. Z. Ni, L. Zhang, “Determination of arsenic in soil, coal fly ash and biological samples by electrothermal atomic absorption spectrometry with matrix modification”, Anal. Chim. Acta, 1983, 151, 179.

    [72] X. Q. Shan, M. Z. Ni, L. Zhang, At. Spectrosc., 1984, 5, 1.

    [73] X. Q. Shan, M. Z. Ni, L. Zhang, “Application of matrix-modification in determination of thallium in waste water by graphite-furnace atomic-absorption spectrometry”, Talanta, 1984, 31, 150.

    [74] Z. Grobenski, W. Erler and U. Voellkopf, At. Spectrosc., 1985, 6, 91.

    [75] L. Ping, K. Fuwa and K. Matsumoto, “Sensitivity enhancement by palladium addition in the electrothermal atomic absorption spectrometry of mercury”, Anal. Chim. Acta, 1985, 171, 279.

    [76] X. Q. Shan, M. Z. Ni, Z. N. Yvan, “Determination of indium in minerals, river sediments and coal fly ash by electrothermal atomic absorption spectrometry with palladium as a matrix modifier”, Anal. Chim. Acta, 1985, 171, 269.

    [77] A. J. Curtius et al., “Determination of phosphorus by graphite furnace atomic absorption spectrometry. Part 2. Comparison of different modifiers”, J. Anal. At. Spectrom., 1987, 2, 115.

    [78] B. Welz, G. Schlemmer and J. R. Mudakavi, “Palladium nitrate-magnesium nitrate modifier for graphite furnace atomic absorption spectrometry. Part 2. Determination of arsenic, cadmium, copper, manganese, lead, antimony, selenium and thallium in water”, J. Anal. At. Spectrom., 1988, 3, 695.

    [79] L. M. Voth-Beach, D. E. Shrader, “Investigations of a reduced palladium chemical modifier for graphite furnace atomic absorption spectrometry”, J. Anal. At. Spectrom., 1987, 2, 45.

    [80] L. M. Voth- Beach, D. E. Shrader, Spectroscopy, 1986, 1(10), 49.

    [81] M. B. Knowles, K. G. Brodie, “Determination of selenium in blood by Zeeman graphite furnace atomic absorption spectrometry using a palladium-ascorbic acid chemical modifier”, J. Anal. At. Spectrom., 1988, 3, 511.

    [82] Z. Grobenski, W. Erler and U. Voellkopf, At. Spectrosc., 1985, 6, 917.

    [83] D. E. Shrader, L. M. Beach and T. M. Rettberg, Res. Nat. Inst. Stand. Technol., 1988, 93(3), 450.

    [84] L. M. Beach, Spectroscopy, 1987, 2, 1121.

    [85] B. V. L’vov, “Electrothermal atomization—the way toward absolute methods of atomic absorption analysis”, Spectrochim Acta, 1978, 33 B, 153.

    [86] B. Welz, G. Schlemmer, J. R. Mudukavi, “Investigation and elimination of chloride interference on thallium in graphite furnace atomic absorption spectrometry”, Anal. Chem., 1988, 60, 2567.

    [87] J. Greed, T. Martin, J. O’Dell, Environ. Sci. Technol., 1992, 26, 102.

    [88] D. L. Tsalev, V. I. Slaveykova and P. B. Mandjukov, “Chemical modification in graphite-furnance atomic-absorption spectrometry”, Spectrochim. Acta Rev., 1990, 13, 225.

    [89] H. Qiao, K. W. Jackson, “Modification by palladium in the analysis of slurries by graphite-furnace atomic-absorption spectrometry-a physical-mechanism”, Spectrochim. Acta, 1992, 47A, 1267.

    [90] B. Welz, G. Schlemmer, “Palladium and magnesium nitrates, a more universal modifier for graphite-furnace atomic-absorption
    spectrometry”, Spectrochim. Acta, 1986, 41B, 1157.

    [91] B. Welz, G. Schlemmer and J. R. Mudukavi, “Palladium nitrate modifier for electrothermal atomic-absorption spectrometry .3. determination of mercury in environmental standard reference materials”, J. Anal. At. Spectrom., 1992, 7, 499.

    [92] B. Radziuk, G. Rodel and H. Stenz, “Spectrometer system for simultaneous multi-element electrothermal atomic absorption spectrometry using line sources and Zeeman-effect background correction”, J. Anal. At. Spectrom., 1995, 10, 127.

    [93] B. Radziuk, G R odel, M. Zeiher, S. Mizuno and K. Yamamoto, “Solid state detector for simultaneous multi-element electrothermal atomic absorption spectrometry with Zeeman-effect background correction”, J. Anal. At. Spectrom., 1995, 10, 415.

    [94] J. M. Harnly, Fresenius J. Anal. Chem., 1996, 355, 501.

    [95] G. Carnrick, G. Schlemmer and W. Slavin, American Laboratory, 2, 120, 1991.

    [96] G. Schlemmer, B. Welz, “Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry”, Spectrochimica Acta, 1986, Vol. 41B., No.11, 1157.

    [97] J. R. Andersen, S. Reimert, “Determination of aluminium in human tissues and body fluids by Zeeman-corrected atomic absorption spectrometry”, The Analyst, 1986, 111, 657.

    [98] P. Dube, “Determination of chromium in human urine by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction”, The Analyst, 1988, 113, 917.

    [99] D. E. Richard, Atomic Absorption Newsletter, 1975, Vol. 14, No.5, 127.

    [100] M. Bettinelli, U. Baroni, F. Fontana, P. Poisetti, “Evaluation of the L'vov platform and matrix modification for the determination of aluminium in serum”, The Analyst, 1985,110, 19.

    [101] K. G. Feitsma, J. P. Franke, “Comparison of some matrix modifiers for the determination of cadmium in urine by atomic-absorption spectrometry with electrothermal atomisation”, The Analyst, 1984, 109, 789.

    [102] P. Strohal, K. Molnarand, I. Bai, “Preconcentration of Trace Elements by Aluminium Hydroxide”, Mikrochimica Acta, 1972, 60, 586.

    [103] I. M. Kolthoff, B. Moskovitz, “Studies on Coprecipitation and Aging. XI. Adsorption of Ammonio Copper Ion on and Coprecipitation with Hydrous Ferric Oxide. Aging of the Precipitate”, J. Phys. Chem., 1937, 41, 629.

    [104] Standard Methods for Examination of Water and Wastewater, 15th ed.; American Public Health Association: New York, 1981.

    [105] R. E. Sturgeon, S. N. Willie, S. S. Berman, “Preconcentration of Selenium and Antimony from Seawater for Determination by Graphite Furnace Atomic Absorption Spectrometry”, Anal. Chem., 1985, 57, 6.

    [106] J. N. King, J. S. Fritz, “Concentration of Metal Ions by
    Complexation with Sodium bis(2-hydroxyethyl)dithiocarbamate
    and Sorption on XAD-4 Resin”, Anal. Chem., 1985, 57, 1016.

    [107] E. Psillakis, N. Kalogerakis, “Developments in Single-Drop
    Microextraction”, Trends Anal. Chem., 2002, 21, 53.

    [108] H. Liu, P. K. Dasgupta, “Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop”, Anal. Chem., 1996, 68, 1817.

    [109] M. A. Jeannot, F. F. Cantwell, “Solvent Microextraction into a Single Drop”, Anal. Chem., 1996, 68, 2236.

    [110] M. A. Jeannot, F. F. Cantwell, “Mass Transfer Characteristics of Solvent Extraction into a Single Drop at the Tip of a Syringe Needle”, Anal. Chem., 1997, 69, 235.

    [111] M. Ma, F. F. Cantwell, “Solvent Microextraction with
    Simultaneous Back-Extraction for Sample Cleanup and Preconcentration: Preconcentration into a Single Microdrop”, Anal. Chem., 1999, 71, 388.

    [112] Wu. Liu and H. K. Lee, “Continuous-Flow Microextraction Exceeding1000-Fold Concentration of Dilute Analytes”, Anal. Chem., 2000, 72, 4462.

    [113] S. Pedersen-Bjergaard, K. E. Rasmussen, “Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis”, Anal. Chem., 1999, 71, 2650.

    [114] E. Psillakis, N. Kalogerakis, “Developments in Liquid-Phase Microextraction”, Trends Anal. Chem., 2003, 22, 565.

    [115] G. Shen, H. K. Lee, “Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides”, Anal. Chem., 2002, 74, 648.

    [116] L. Hou, H. K. Lee, “Dynamic Three-Phase Microextraction as a Sample Preparation Technique Prior to Capillary Electrophoresis”, Anal. Chem. 2003, 75, 2784.

    [117] X. Jiang, S. Y. Oh, H. K. Lee, “Dynamic Liquid-Liquid-Liquid Microextraction with Automated Movement of the Acceptor Phase”, Anal. Chem., 2005, 77, 1689.

    [118] X. Jiang, H. K. Lee, “Solvent Bar Microextraction”, Anal. Chem.,
    2004, 76, 5591.

    [119]M.Schellin, B.Hauser, P.Popp, “Determination of Organophosphorus
    Pesticides Using Membrane-Assisted Solvent Extraction Combined with Large Volume Injection-Gas Chromatography-Mass Spectrometric Detection”, J. Chromatogr. A, 2004, 1040, 251.

    [120] M. Rezaee, Y. Assadiab, M. R. M. Hosseinia, et al.,
    “Determination of organic compounds in water using dispersive
    liquid-liquid microextraction”, Journal of Chromatography A, 2006, 1116, 1.

    [121] L. B. Xia, B. Hu, Z. C. Jiang, “Single-drop microextraction
    combined with low-temperature electrothermal vaporization ICPMS for the determination of trace Be, Co, Pd, and Cd in biological samples”, Anal. Chem., 2004, 76, 2910.

    [122] L. B. Xia, B. Hu, Z. C. Jiang, “8-Hydroxyquinoline-chloroform
    single drop microextraction and electrothermal vaporization
    ICP-MS for the fractionation of aluminium in natural waters and
    drinks”, J. Anal. At. Spectrom., 2005, 20, 441.

    [123] L. Li, B. Hu, L. B. Xia, et al., “Determination of trace Cd and Pb in
    environmental and biological samples by ETV-ICP-MS after
    single-drop microextraction”, TALANTA , 2006, 70, 468.

    [124] L. B. Xia, B. Hu, Z. C. Jiang, et al., “Hollow fiber liquid phase
    microextraction combined with electrothermal vaporization ICP-MS for the speciation of inorganic selenium in natural waters”, JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2006, 21, 362.

    [125] Li Li, Bin Hu., “Hollow-fibre liquid phase microextraction for
    separation and preconcentration of vanadium species in natural
    waters and their determination by electrothermal
    vaporization-ICP-OES”, Talanta, 2007, 72, 472.

    [126] Z. F. Fan, W. Zhou, “Dithizone-chloroform single drop
    microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples”,
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2006, 61 (7) 870.

    [127] E. Z. Jahromi, A. Bidari, Y. Assadi, et al., “Dispersive liquid-liquid
    microextraction combined with graphite furnace atomic absorption
    spectrometry - Ultra trace determination of cadmium in water
    samples”, ANALYTICA CHIMICA ACTA, 2007, 585 (2), 305.

    [128] Eduardo Caraseka, Jussara Wick Tonjesb, Mauro Scharf, “A new
    method of microvolume back-extraction procedure for enrichment of Pb and Cd and determination by flame atomic absorption spectrometry”, Talanta, 2002, 56, 185.

    [129] A. M. Kiwan, “Use of Dichloromethane with Dithizone as an
    Alternative Solvent to Carbon Tetrachloride Restricted by Montreal
    Protocol”, Talanta, 1997,44, 947.

    [130] L. Jamshid Manzoori., Ghasem Karim-Nezhad, “Selective cloud
    point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination”, Analytica Chimica Acta, 2003, 484, 155.

    [131] C. C. Chen, M. B. Melwanki, S. D. Huang, “Liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase for the extraction of phenoxyacetic acids prior to liquid chromatography detection ”, J. Chromatogr. A, 2006, 1104, 33.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE