研究生: |
朱奕豪 Jhu, Yi-Hao |
---|---|
論文名稱: |
一維淬火動力系統中的量子糾纏熵能譜 Entanglement spectrum in one-dimensional quench dynamics |
指導教授: |
陳柏中
Chen, Pochung 張明強 Chung, Ming-Chiang |
口試委員: |
牟中瑜
Mou, Chung-Yu 米格爾 Miguel A. Cazalilla 高英哲 Kao, Ying-Jer |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 淬火動力學 、量子糾纏 、一維 |
外文關鍵詞: | Quench dynamics, Entanglement, One dimension |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究一維自由系統的量子糾纏熵能譜於量子淬火後的行為。 利用拓樸最大糾纏態來定義系統的非普通拓樸性質,我們發現系統於時間很長時所達到的平衡態,其拓樸性質可由一有效磁場 $\mathbf{S}_{\mbox{eff}}$ 來描述。 若 $\mathbf{S}_{\mbox{eff}}$ 具有非普通貝瑞相位,則系統處於非普通拓樸態,反之亦然。考慮具體的二元鏈模型和P波超導模型,我們發現系統必需要在同一個拓樸相之間淬火才能夠有拓樸平衡態,此外,我們也發現系統都是以冪次律收斂到其平衡態。 然而,我們發現二元鏈模型的平衡態比起P波超導模型的平衡態來得更具有普適性。 在二元鏈模型之中,我們發現其冪次律收斂的指數永遠為3/2且在同一個拓樸相之間淬火時,系統永遠會有拓樸平衡態。 但在P波超導模型中,我們發現其冪次律收斂的指數可被系統參數改變,且在同一個拓樸相之間淬火時,系統也並非永遠具有拓樸平衡態。
In this thesis, we study the one particle entanglement spectrum (OPES) after a quantum sudden quench in the one dimensional and quadratic systems. Using the topological maximal entangled state (tMES) as a signature of non-trivial topology. We find the topology of the steady state at the long time limit can be captured by a pseudo-magnetic field $\mathbf{S}_{\mbox{eff}}$, where the non-trivial or trivial Berry phase of $\mathbf{S}_{\mbox{eff}}$ determines the steady state to be topological or not. Using the dimerized chain and p-wave superconductor as practical examples, we find the topological steady states can only exist for the quenches between the same topological phase. On the other hand, the convergences to the steady states are found to be power-law like. However, we find the steady states in the dimerized chain are more universal than the steady states in the p-wave superconductor. In dimerized chain, we find the exponents of the power-law convergences are always 3/2 and the topological steady states are always found for the quenches between the same topological phase. While, in the p-wave superconductor, the exponent of the power-law convergence can be changed by tuning the parameters and one can have trivial steady states even for the quenches between the same topological phase.
[1] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[3] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] M. Konig et al., Science 318, 766 (2007).
[5] A. Roth et al., Science 325, 294 (2009).
[6] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
[7] N. Levy et al., Phys. Rev. Lett. 110, 117001 (2013).
[8] S. Sasaki et al., Phys. Rev. Lett. 107, 217001 (2011).
[9] V. Mourik et al., Science 336, 1003 (2012).
[10] S.-Y. Xu et al., Science 349, 613 (2015).
[11] S.-Y. Xu et al., Nature 11, 748 (2015).
[12] B. Q. Lv et al., Phys. Rev. X 5, 031013 (2015).
[13] B. Q. Lv et al., Nature 11, 724 (2015).
[14] L. X. Yang et al., Nature 11, 728 (2015).
[15] X. Huang et al., Phys. Rev. X 5, 031023 (2015).
[16] U. Schollw ̈ock, Rev. Mod. Phys. 77, 259 (2005).
[17] U. Schollw ̈ock, Annals of Physics 326, 96 (2011).
[18] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).
[19] R. Orus and G. Vidal, Phys. Rev. B 78, 155117 (2008).
[20] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
[21] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).
[22] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[23] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).
[24] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[25] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
[26] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).
[27] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys. Rev. B 81, 064439 (2010).
[28] A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83, 075102 (2011).
[29] I. Peschel, Journal of Physics A: Mathematical and General 36, L205 (2003).
[30] S. Ryu and Y. Hatsugai, Phys. Rev. B 73, 245115 (2006).
[31] M.-C. Chung, Y.-H. Jhu, P. Chen, and S. Yip, EPL (Europhysics Letters) 95, 27003 (2011).
[32] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011).
[33] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
[34] V. I. Yukalov, Laser Physics Letters 8, 485 (2011).
[35] A. A. Patel, S. Sharma, and A. Dutta, The European Physical Journal B 86, 1 (2013).
[36] A. Rajak and A. Dutta, Phys. Rev. E 89, 042125 (2014).
[37] R. Vasseur, J. P. Dahlhaus, and J. E. Moore, Phys. Rev. X 4, 041007 (2014).
[38] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).
[39] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
[40] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).
[41] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New Journal of Physics 12, 065010 (2010).
[42] Y.-Z. You and C. Xu, Phys. Rev. B 90, 245120 (2014).
[43] E. Majorana, Nuovo Cimento 14, 171 (1937).
[44] T. L. Bernevig, B. Andrei with Hughes, Topological Insulators and Topological Superconductors (Dover Publications, Inc., New York, 2013).
[45] A. Chandran, M. Hermanns, N. Regnault, and B. A. Bernevig, Phys. Rev. B 84, 205136 (2011).
[46] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
[47] M.-C. Chung and I. Peschel, Phys. Rev. B 64, 064412 (2001).
[48] S.-A. Cheong and C. L. Henley, Phys. Rev. B 69, 075111 (2004).
[49] N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals (Dover Publications, Inc., New York, 1986).
[50] P. Calabrese and J. Cardy, Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005).
[51] M. Fagotti and F. H. L. Essler, Phys. Rev. B 87, 245107 (2013).
[52] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[53] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[54] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
[55] M. Rigol, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74, 053616 (2006).
[56] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007).
[57] M. A. Cazalilla, A. Iucci, and M.-C. Chung, Phys. Rev. E 85, 011133 (2012).
[58] M.-C. Chung, A. Iucci, and M. A. Cazalilla, New Journal of Physics 14, 075013 (2012).