研究生: |
林楷恩 LIN, KAI-EN |
---|---|
論文名稱: |
分散式多階層模組併網型轉換器 Grid-Connected Modular Multilevel Converter with Distributed Control |
指導教授: |
吳財福
Wu, Tsai-Fu |
口試委員: |
黃智方
HUANG, CHIH-FANG 鄭博泰 CHENG, PO-TAI 陳建富 CHEN, JIAN-FU |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 分切合整數位控制 、交錯式脈波寬度調變 、模組電容穩壓 、分散式多階層模組轉換器 |
外文關鍵詞: | D-Σ digital control, interleaved PWM, cell-capacitor voltage regulation, Grid-Connected Modular Multilevel Converter with Distributed Control |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究研製分切合整數位控制多階層模組雙向轉換器。轉換器可應用於同步補償器、高壓直流輸電、背對背系統、馬達驅動、及電池儲能系統等。分切合整數位控制法的特點是可以將電感值隨著電流的變化納入考量。在相同的電流下,若跟傳統的控制法相比,分切合整數位控制法可以得到較小的電感體積。各台控制器可藉由此控制法精準得到相應的責任比率,再經由交錯式脈波寬度調變,達到降低電流漣波的效果。本研究利用多階層模組轉換器,執行併網模式,將能量饋入市電端。此外,模組電容穩壓是將責任比率中,額外添加ㄧ個微小的變化量,以此來調節模組電壓。
本研究的貢獻為以下幾點,第一點為採用分切合整數位控制法,除了可將電感變化納入計算,也可以利用此控制法得到模組電容電壓表示式,對選擇模組電容以降低漣波有很大的幫助。第二點為採用分散式控制,解決模組擴充受限於控制器模組數量的問題。在控制方面,則是藉由各區域控制器計算出電流命令,並利用中央控制器統一對區域控制器進行調整。第三點為採用多階層架構實現高壓直流傳輸。利用模組串接,可以有效地提高直流鏈電壓,如此一來,在遠距離直流微電網傳輸過程中,可以選擇較細傳輸導線。
最後,本研究實作多階層模組雙向轉換器系統,並經由實測結果驗證本論文所提出的控制法則。
關鍵字:分切合整數位控制、交錯式脈波寬度調變、模組電容穩壓、分散式多階層模組轉換器
Abstract
This research designs and implements division-summation (D-Σ) digital controlled bi-directional modular multilevel converters. Modular multilevel converters are widely used in STATCOM, HVDC, back-to-back power transfer systems, motor driving and battery storage systems. The D-Σ digital control method can take into account inductance variation with the change of filter current. Compared with traditional control methode, the D-Σ digital control can reduce core volume under the same current level. Use interleaving method can reduce the inductor current ripple. In this research, we implement modular multilevel converters to realize real-power injection into the grid. Besides, the D-Σ digital control introduces a small duty ratio to achieve cell-capacitor voltage regulation.
The main contributions of this research are as follows. The first one is to adopt D-Σ digital control. We can not only take the inductance variation into consideration, but can obtain a cell voltage expression. Secondly, distributed control is used to solve the limitation of the number of modules controlled by a single controller. This control method can use each local controller to calculate duty cycle and adopting a central controller to synchronize all local controllers. Thirdly, we adopt the MMC to realize HVDCs and to effectively improve the dc-bus voltage regulation. It is useful in reducing diameter of transmission line for a long-distance dc microgrid.
Finally, bi-directional modular multilevel converters have been implemented, and measured results have verified the current tracking control law and voltage regulation schemes.
Keywords: D-Σ digital control, interleaved PWM, cell-capacitor voltage regulation and Grid-Connected Modular Multilevel Converter with Distributed Control.
參考文獻
[1] http://astyfc.wixsite.com/tfwu2013/now2013
[2] T. F. Wu, Y. Y. Chang, C. H. Chang, T. C. Zou, and Y. R. Chang, "Current improvement for D- digital controlled three-phase bi-directional inverter with wide inductance variation," 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, 2015, pp. 1-6.
[3] L. D. S. Bezerra, R. P. Torrico-Bascopé and C. M. T. Cruz, "Control strategy for multifunctional, three-phase, four wire, AC-DC boost converter," 2013 Brazilian Power Electronics Conference, Gramado, 2013, pp. 399-405.
[4] B. R. Lin and T. Y. Yang, "Experimental verification of three-phase four-wire current-regulated PWM converter," in IEE Proceedings - Electric Power Applications, vol. 152, no. 3, 6 May 2005, pp. 677-685
[5] A. Lesnicar and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range," 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, pp. 6.
[6] 劉鐘淇,宋強,劉文華.基於模組化多電平變流器的輕型直流輸電系統[J].電力系統自動化,2010,34(2):53-58。
[7] 管敏淵,徐政.模組化多電平換流器型直流輸電的建模與控制.電力系統自動化,2010,34(19):64-68。
[8] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, "A Survey on Cascaded Multilevel Inverters," in IEEE Transactions on Industrial Electronics, vol. 57, no. 7, July 2010, pp. 2197-2206.
[9] J. S. Lai and F. Z. Peng, "Multilevel converters-a new breed of power converters," in IEEE Transactions on Industry Applications, vol. 32, no. 3, May/Jun 1996, pp. 509-517.
[10] E. Behrouzian, M. Bongiorno and H. Z. De La Parra, "An overview of multilevel converter topologies for grid connected applications," 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-10.
[11] S. Kouroetal, "Recent Advances and Industrial Applications of Multilevel Converters," in IEEE Transactions on Industrial Electronics, vol. 57, no. 8, Aug. 2010, pp. 2553-2580.
[12] J. Rodriguez, J. Lai and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, Aug 2002, pp. 724-738.
[13] M. Carpaneto, M. Marchesoni and L. Vaccaro, "A New Cascaded Multilevel Converter Based on NPC Cells," 2007 IEEE International Symposium on Industrial Electronics, Vigo, 2007, pp. 1033-1038.
[14] S. A. Khajehoddin, J. Ghaisari, A. Bakhshai and P. K. Jain, "A novel modeling and analysis of capacitor-clamped multilevel converters," 2006 37th IEEE Power Electronics Specialists Conference, Jeju, 2006, pp. 1-5.
[15] D. Karwatzki and A. Mertens, "Generalized Control Approach for a Class of Modular Multilevel Converter Topologies," in IEEE Transactions on Power Electronics , vol.PP, no.99, pp.1-1
[16] H. Akagi, "Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC)," in IEEE Transactions on Power Electronics, vol. 26, no. 11, Nov. 2011, pp. 3119-3130.
[17] K. Shi, F. Shen, D. Lv, P. Lin, M. Chen, and D. Xu, “A novel start-up scheme for modular multilevel converter,” in Proc. Conf. IEEE Energy Convers. Congr, Expo, 2012, pp. 4180–4187.
[18] RX62T Group datasheet Rev. 2.00, Renesas, 2013.
[19] Magnetic Powder Cores Ver. 12
[20] IGW60T120 datasheet
[21] C2M0025120D datasheet