簡易檢索 / 詳目顯示

研究生: 辜民翔
Gu, Min-Siang
論文名稱: 尖角穿隧二極體特性分析與量測之研究
Measurement and Characterization of Tip Tunneling Diode
指導教授: 金雅琴
King, Ya-Chin
口試委員: 林崇隆
Lin, Chrong Jung
盧向成
Lu, Shiang-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 二極體電場增強尖角結構嵌入式記憶體可靠度
外文關鍵詞: diode, Field enhancement, tip structure, embedded flash process, Reliability
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文討論使用0.18微米嵌入式記憶體製程來製作尖角穿隧二極體之特性,利用尖角所產生得電場增強效應造成順偏逆偏I-V特性上的差別,並利用模擬和實際量測來驗證其特性。尖角穿隧二極體導通機制為F-N穿隧,在足夠大的電場下尖角穿隧二極體即能導通,不像一般二極體需要載子的注入使其導通,將可利於高速切換的應用上;同時,其電容值並不隨偏壓改變;在溫度變化下,其電流電壓特性之穩定度高。


    This work presents a tip tunneling diode by 0.18µm embedded flash process. The tip structure is employed to create electrical field enhancement effect, resulting in current difference between forward and reverse bias. Thorough, measurement and simulation of the tunneling diodes are included in this work. Significant conduction current through tunneling can be obtained with high enough electric field. Unlike a conventional diode which requires carrier injection into the junction at forward-bias operation, tunneling diode can be advantageous for speed switching. Capacitance is relatively independent of bias voltage. In addition, its IV characteristics remains very stable with temperature change.

    摘要 i Abstract ii 致謝 iii 內文目錄 iv 圖目錄 vi 第一章 諸論 1  1.1 前言 1  1.2 論文大綱 1 第二章 穿隧機制與穿隧元件回顧 3  2.1 穿透機制介紹 3  2.2 穿隧二極體(Tunneling Diode) 6  2.3 金屬-絕緣層-半導體(MIS)穿隧元件 6  2.4 電場增強效應的應用 7  2.5 小結 7 第三章 尖角穿隧二極體 16  3.1 元件設計與製作 16   3.1.1元件結構 16  3.2電場增強效應模擬 17  3.3 元件特性模擬 18   3.4 小結 19 第四章 量測結果與討論 31  4.1 量測環境與元件特性討論 31   4.1.1 量測環境介紹 31   4.1.2 量測結果討論 31  4.2 溫度效應 32  4.3 最大電壓操作特性 32  4.4 可靠度測試與分析 33  4.5 小結 34 第五章 結論 49 参考文獻 50

    [1] R. H. Kingston, ”Switching Time in Junction Diode and Junction Transistors”,  Electron Devices,829-834, 1954
    [2] Sze, S. M and Ng, Kwok K, “Physics of Semiconductor Devices”, third edition.
    [3] Andreas Schenk and Gernot Heiser, “Modeling and simulation of tunneling through ultra-thin gate dielectrics”, Journal of Applied Physics 81,7900, 1997.
    [4] M. Lenzlinger and E. H. Snow, “FowlerNordheim Tunneling into Thermally Grown SiO2”, Journal of Applied Physics 40, 278, 1969
    [5] Samar K. Saha, “Design Consideration for Sub-90-nm Split-Gate Flash-Memory Cells”, IEEE Transaction on electron devices, pp 3049-3055, 2007
    [6] Engin Arsian, Serkan Bütün, and Ekmel Ozbay “Leakage current by Frenkel-Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures”, Applied Physics Letters 94, 142106 ,2009
    [7] Johnny Ling, “Resonant Tunneling Diode:Theory of Operation and Applications”, University of Rochester, Rochester, NT 14627
    [8] M. A Green, F. F. King and J. SHEWCHUN, “Minority Carrier MIS tunnel Diode and Their Application to Electron and Photo-Voltaic Energy Conversion”, Solid-State Electronics, 551-561, Vol,17 1974
    [9] C. Langer, “Theoretical Investigation into the Field Enhancement Factor of Silicon Structures”, Vacuum Nanoelectronics Conference, 10.1109, 2012
    [10] Nguyen Tuan Hong , Ken Ha Koh, Soonil Lee, ”Impacts of purposely field enhancement on high electron emitting CNT-cathode”, Vacuum Electron Sources Conference ,359-360, 2010
    [11] Nannan Li and Baoqing Zeng, “Simulation studies of the distribution of field-enhancement factors for individual cone emitter” Vacuum Electron Sources Conference, 1-2 , 2012
    [12] Mattausch, H. J. , Baumgartner,H. , Allinger, Robert , Kerber M. ,Braun, Helga, ” Electrical/Thermal Properties of Nonplanar Polyoxides and the Consequent Effects for EEPROM Cell Operation” Electron Devices, IEEE, 1251-1257 ,2000
    [13] Yuri Tkachev, Xian Liu and Alexander Kotov, ” Floating-Gate Corner-Enhanced Poly-to-Poly Tunneling in Split-Gate Flash Memory Cells” Electron Devices, IEEE, 5-11, 2012
    [14] Yeh, Everett C.-C. , Tu, K. N, “Numerical simulation of current crowding phenomena and their effects on electromigration in very large scale integration interconnects” JOURNAL OF APPLIED PHYSICS, 5680-5686, 2000
    [15] R. Degraeve, B. Kaczer, G. Groeseneken, “Degradation and breakdown in thin oxide layers: mechanisms, models and reliability prediction”, Microelectron Reliab., pp. 1445–1460, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE