簡易檢索 / 詳目顯示

研究生: 鄭婕柔
Cheng, Chieh-Jou
論文名稱: 用氮化矽作為擋層與抗反射層之離子佈植方式製成P型單晶矽太陽能電池
Ion-Implanted Monocrystalline Silicon Solar Cells with SiNx Used as Barrier Layer and Anti-Reflection Layer.
指導教授: 王立康
WANG, LI-KARN
口試委員: 陳昇暉
甘炯耀
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: 離子佈植太陽能電池單晶矽太陽能電池
外文關鍵詞: Ion-implanted, Solar cell, Monocrystalline Silicon Solar Cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在矽晶太陽能電池現階段的發展上,效率方面已經面臨物理極限瓶頸。除了效率的追求,成本考量也是重要課題。本文利用P型矽基板製作太陽能電池,以離子佈植取代傳統磷擴散,除了少了磷玻璃去除與PN接面絕緣化兩道製程步驟,較於擴散的製程更能控制接面的深度與輪廓,也有較佳的均勻度,以量產的角度來看,能達到效率的提升與成本的降低。本篇採正面磷佈植方式形成P-N接面,背面以硼佈植及鋁漿印刷形成全面BSF的狀況。利用少數載子生命週期與片電阻的量測,來找出摻雜的最佳條件以及阻擋層對於佈植損傷與接面深度控制的改善與否。以之沉積於電池正面,將氮化矽同時作為抗反射層與離子佈植的阻擋層,降低接面處的磷濃度亦減少製程。透過阻擋層厚度、佈植劑量與能量、以及網印漿料的選擇等的調整,最佳化P型矽晶太陽能電池。


    Silicon solar cell development has faced its major bottleneck in efficiency improvement. While improving the manufacturing processes, cost control also needs to be considered.
    In this study, we propose a new method for the first time to use p-type silicon wafers to fabricate solar cells. Instead of traditional phosphorus diffusion, we use the ion implantation technique to run the process. By doing so, not only can processes of phosphorus glass removal and edge isolation be eliminated, but also a shallower diffusion depth and a sharper dopant profile can be reached. This helps to speed up the process and improve the performance, and thus to reach the goal of both cost saving and performance improvement.
    The front side of a p-type silicon wafer take phosphorus implanted junction, and the back side take boron implanted BSF (back-surface field). Minority carrier lifetime and sheet resistance data are analyzed to find the optimum doping condition, revealing the status of implantation damage and depth control.
    In this study, a silicon nitride layer is deposited on the front side of the solar wafer as a barrier layer and anti-reflection layer before the ion implantation. This helps to reduce the depth of junction and save the process step. By adjusting the barrier layer thickness, implantation dose and implantation energy, we find the best conversion efficiency of the implanted silicon solar cell.

    Abstract I 摘要 II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 X 第一章、導論 1 1-1前言 1 1-2太陽能電池發展 2 1-3太陽能產業鏈 4 1-4研究動機與目的 6 1-5論文架構 6 第二章、研究理論 7 2-1基本半導體物理 7   2-1.1半導體材料簡介 7   2-1.2半導體材料的晶體結構 8   2-1.3能帶理論 10   2-1.4直接能隙與間接能隙 12   2-1.5半導體摻雜 13   2-1.6 PN接面(PN junction) 14 2-2太陽能電池原理 15 2-2.1太陽常數 13 2-2.2太陽能電池等效電路 14 2-2.3太陽能電池運作原理 22 2-2.4太陽能電池效率損失 23 2-2.5載子復合 25 2-3離子佈植 27 2-4背電場(Back surface field, BSF) 29 第三章、研究方法與製程步驟 30 3-1儀器介紹 31 3-2實驗步驟 35 3-2.1 RCA Clean 37 3-2.2 表面粗糙化(Texturing) 39 3-2.3 硼離子佈植 40 3-2.4 退火(Annealing) 41 3-2.5 氮化矽沉積 42 3-2.6 磷離子佈植 43 3-2.7 退火(Annealing) 44 3-2.8 網印電極 44 3-2.9 電極共燒(co-firing) 45 第四章、數據分析與討論 46 4-1 硼離子佈植最佳退火環境及參數 47 4-2 阻擋層厚度比較 50 4-3 磷佈植與磷擴散均勻性比較 51 4-4 以不同能量磷佈植於100nm氮化矽 52 4-5 反射率 55 4-6 SEM觀測電池背部鋁矽合金所形成BSF厚度 58 4-7 I-V 量測 60 4-8 外部量子效應 (EQE) 量測 64 第五章、總結 65 參考文獻 68

    [1] 2050年瑞典將成為全球第一個100%綠能國家,
    https://www.peoplenews.tw/news/02f4c60b-d11d-4844-a43a-b329263c8dcf
    [2] 台灣太陽光電產業政策與市場發展趨勢,
    https://www.trademag.org.tw/Upload/tam_tam/738040/臺灣太陽光電產業趨勢和市場現況.pdf
    [3] 台灣太陽能產業的契機元晶太陽能,
    http://www.tsecpv.com/upload/media/index/investor/20171207.pdf
    [4] S. Sharma, K.K. Jain, and A. Sharma, “Solar cells: in research and applications—a review,” Materials Sciences and Applications, vol. 6, pp.2642-2644, 2015.
    [5] Solar cell (Wikipedia), https://en.wikipedia.org/wiki/Solar_cell
    [6] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, vol. 25, pp.676-677, 1954.
    [7] Best Research-Cell Efficiency Chart (National Renewable Energy Laboratory), https://www.nrel.gov/pv/cell-efficiency.html
    [8] 太陽能產業鏈,
    https://meethub.bnext.com.tw/勢在必行
    [9] 國立臺灣歷史博物館的光電雲牆,
    http://solar1963.blogspot.com/2015/09/blog-post_25.html
    [10] A. Rohatgi, D.L. Meier, B. McPherson, Y.W OK, A.D. Upadhyaya, J.H. Lai, and F. Zimbardi, “High-throughput ion-implantation for low-cost high-efficiency silicon solar cells” International Conference on Materials for Advanced Technologies, 2011.
    [11] D.A. Neamen (2009), Semiconductor physics and devices: basic principles (2nd ed.). Mcgraw Hill Higher Education.
    [12] D.A. Neamen (2012), Semiconductor Physics and devices: Basic Principles (4th ed.). US: Mc Graw Hill.
    [13] 綠色能量有限公司,
    http://greenergy-tw.com/info1.html
    [14] Hitachi High-Technologies GLOBAL,
    https://www.hitachi-hightech.com/global/products/device/semiconductor/properties.html
    [15] 施敏、李明逵 (2012)。《半導體元件物理與製作技術》。交通大學出版社。
    [16] 翁敏航 (2010)。 《太陽能電池:原理、元件、材料、製程與檢測技術》。東華出版社。
    [17] Sunlight (Wikipedia), https://en.wikipedia.org/wiki/Sunlight
    [18] 太陽電池測試,https://www.toptical.com.tw/web/SG?pageID=41208
    [19] M.A. Green (2009)。《太陽電池工作原理,技術與系統應用》。曹昭陽、狄大衛、李秀文譯。五南圖書出版公司。
    [20] R. Stevenson, “Slimmer solar cells,” Ingenia, vol. 53, pp. 33–37.
    [21] M.A. Green, “Photovoltaic principles,” Physica E: Low-dimensional Systems and Nanostructures, vol 14, iss. 1–2, pp.11-17, 2002.
    [22] W.P. Mulligan, D.H. Rose, and M.J. Cudzinovic, “Manufacture of solar cells with 21% efficiency,” 19th European Photovoltaic Solar Energy Conference, pp.7-11, Jun. 2004.
    [23] 胡雁程 (2009)。《矽晶太陽能電池鈍化技術之研究:硝酸浸泡方式處理及氫還原氣氛搭配氮化矽鈍化》。清華大學博士論文。

    [24] C.T. Sah, R.N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics.” Proceedings of the IRE, pp.1228-1243, 1957.
    [25] J.M. Park (2004). Novel power devices for smart power applications. St. Peter.
    [26] J.D. Plummer, M.D. Deal, and P. B. Griffin (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling, Pearson, pp.451-500.
    [27] J.G. Fossum, “Physical operation of back-surface-field sil0.icon solar cells,” IEEE Transactions on Electron Devices, pp.322-325, 1977.
    [28] G. Singh, A. Verma and R. Jeyakumar, “Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field,” RSC Advances, iss. 28, 2019.
    [29] 國家奈米實驗中心官方網站,
    http://www.ndl.narl.org.tw/docs/devices/CF/T19_A.pdf
    [30] R.A. Sinton, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” PVSC IEEE, 1996.
    [31] Sinton WCT-120, https://www.sintoninstruments.com/products/wct-120/
    [32] 清華大學光電所 - 洪毓玨實驗室網站,
    http://oplab.ipt.nthu.edu.tw/main/node/91
    [33] Sol3A Class AAA Solar Simulators, https://www.newport.com/f/class-aaa-solar-simulators
    [34] 國家奈米實驗中心官方網站 - 檢測機台簡介,
    https://www.tsri.org.tw/tech/material/fesem.jsp
    [35] X. Zhu, L. Wang, and D. Yang, “Investigations of Random Pyramid Texture on the Surface of Single-Crystalline Silicon for Solar Cells,” Proceedings of ISES World Congress 2007, pp.1126-1130, 2009.

    [36] F. Duerinckx and J. Szlufcik, “Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,” Solar Energy Materials and Solar Cells, pp.231-246, 2002.
    [37] A. Lanterne, J.L. Perchec, S. Gall, S. Manuel, M. Coig, A. Tauzin, and Y. Veschetti, “Understanding of the annealing temperature impact on ion implanted bifacial n-type solar cells to reach 20.3% efficiency,” Progress in Photovoltaics: Research and Applications, vol 23 , no 11, pp.1458-1465, 2014.
    [38] 連旭昇 (2016)。《利用硼離子佈植與磷擴散製作N型太陽能電池》。清華大學碩士論文。
    [39] M. Miyake and S. Aoyama, “Transient enhanced diffusion of ionimplanted boron in Si during rapid thermal annealing,” Journal of Applied Physics, vol. 63, pp.1754-1757, 1988.
    [40] W.E. Beadle, J.C.C. Tsai, and R.D. Plummer (1985). Quick reference manual for silicon integrated circuit technology. Wiley.
    [41] S. Selberherr (1984). Analysis and Simulation of Semiconductor Devices. Springer Verlag.
    [42] PV Education,
    https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance

    QR CODE