簡易檢索 / 詳目顯示

研究生: 黃仁豪
Huang, Jen Hao
論文名稱: 利用雷射光鉗系統探討褐藻醣膠在不同環境下黏彈度變化
Using Optical Tweezers to Study the Effect on Viscoelasticity of Fucoidan under Different Conditions
指導教授: 吳見明
Wu,Chien Ming
口試委員: 何淳雪
Ho, Chwen Shell
崔豫笳
Cy,Yo Jia
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 69
中文關鍵詞: 黏度黏彈模數褐藻醣膠雷射光鉗微流變學
外文關鍵詞: viscosity, viscoelasticity, fucoidan, optical tweezers, microrheology
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1970年Athur Ashkin等人第一次使用雷射光捕捉到微小粒子後,雷射光鉗(optical tweezers)便不斷開始發展與演進。至今,由雷射光組成的雷射光鉗已經在生物以及物理領域中成為常見以及時常被應用的技術。
    褐藻醣膠(fucoidan)是一種多醣,主要是由褐藻中所提煉出來,由於它多樣的生物特性,包括抗凝血和抗血栓、抗病毒、抗腫瘤和免疫調節,因此雖然目前被歸類於健康食品卻有相當高的醫療潛力,也因此褐藻醣膠在近幾年來被廣泛的研究著。
    本研究利用雷射光鉗系統,結合了擁有高位移解析度的壓電平台,應用於測量褐藻醣膠在不同濃度、不同PH值、不同溫度的黏彈性和剪力模數(complex shear modulus)。實驗中利用PBS緩衝液將褐藻醣膠配成不同濃度的溶液並配製成不同pH值的溶液和加入不同添加物,接著使用雷射光捕捉聚苯乙烯微球測量微球在溶液中的熱擾動(thermal motion)變化,並研究褐藻醣膠溶液在不同情況下的黏度變化和流變性。
    本實驗首先量測純水溶液藉以計算得到電壓-位移轉換因子β (voltage-displacement coefficient),和實驗所需的雷射光鉗彈性係數(trap stiffness)。本實驗利用固定微球法以及以能量頻譜值為基礎來計算的方式求得β值,彈性係數的量測則分別使用能量頻譜值(power spectral density)能量均分定理(equipartition)及波茲曼分佈(Boltzman distribution)來分析。接著量測褐藻醣膠在不同情況下黏度和黏彈模數的變化。
    實驗中利用雷射光鉗與微流變學結合的方式研究褐藻醣膠的特性。相對於過去傳統流變儀的量測方法,使用雷射光鉗和微流變學結合的方式能夠擴大採樣頻率的範圍,而且也有減少了實驗耗材的成本等優點。在研究發現褐藻醣膠容易溶於水中,隨著濃度越高溶液的黏度也越大。過高的溫度則會破壞褐藻醣膠的氫鍵和分子間的交聯,在七十度以上時則結構完全被破壞。此外我們也發現在中性時褐藻醣膠的結構較穩定,但是在酸性或鹼性狀態下容易水解或是有異構化的反應發生。在加入鹽類的情況下由於離子間靜電作用力的影響會造成黏度和彈度的下降。
    本研究在不同環境與不同添加物下去研究褐藻醣膠的特性,希望未來可以應用在食品科學或是生化的研究上。


    It was 1970 that Arthur Ashkin first succeeded to trap and manipulate particles by using optical tweezers. Since then, optical tweezers start to be developed and improved. Up to now, optical tweezers which are made of lasers are already become one of the most applied technology in the field of biology and physics.
    Fucoidan is a polysaccharide, and it’s mainly refined from the brown alga. Due to its various characteristics, including anticoagulant and antithrombotic, antivirus, antitumor and immunomodulatory, though it is classify as healthy food so far, it has a high potential for medical, that’s the reason why the fucoidan has been extensively studied for decades.
    In this research, we used an optical tweezers system combined with a piezoelectric platform which has a high displacement resolution, and applied them to measure the viscoelasticity and complex shear modulus of the fucoidan in different concentration, pH value, and temperature. The fucoidan solutions were made in different concentrations (i.e. by blending the fucoidan and PBS buffer together) at different pH value (i.e. by adding acetic acid and sodium hydroxide,) and adding in different additives. We proceeded using the optical tweezers to catch the polystyrene microsphere, and measure the thermal motion of it in the solution, and then we calculated the viscosity changing and the rheology of the fucoidan solution under
    different conditions.
    We investigated the characteristics of fucoidan using optical tweezers based on the microrheology in this experiment. In contrary to the traditional measure by rheometer, our investigation can expand the range of sampling frequency and decrease the cost of experimental consumables. After the investigation, we concluded that the higher the concentration goes, the larger the viscosity is. High temperature could break the hydrogen bond and the connection between molecules of fucoidans , when the temperature is above 70 degrees, the structure become totally damaged. The structure of fucoidans is more stable in neutral pH, however in other pH′s, fucoidans are easily hydrolyzed or isomerized. If saline is added to the solution, viscosity and elasticity get lower due to the electrostatic interactions between the ions. In this research, we studied the characteristics of the fucoidan under different conditions and with different chemical additives. The investigations have the potential apply to the research of the bromatology or biochemistry.

    第一章 緒論…………………………………………………………………………1 1-1 前言…………………………………………………………………………1 1-2 文獻回顧……………………………………………………………………2 1-2-1雷射光鉗……………………………………………………………2 1-2-2雷射光鉗結合微流變學的介紹……………………………………5 1-2-3傳統流變儀與黏度計………………………………………………8 1-2-4褐藻醣膠……………………………………………………………9 1-3 研究動機與目的…………………………………………………………12 第二章 實驗原理…………………………………………………………………13 2-1 雷射光鉗原理……………………………………………………………13 2-2 雷射光鉗的聚焦與擴束 ………………………………………………… 16 2-3 雷射光鉗偵測原理 ………………………………………………………17 2-4 流變學與微流變學 ……………………………………………………… 19 2-5 黏彈度分析 ……………………………………………………………… 22 第三章 雷射光鉗系統之架構原理 ……………………………………………28 3-1 雷射光鉗系統圖 …………………………………………………………28 3-2 光路之整體架設原理 ……………………………………………………29 3-3 光四象限二極體與相關元件 ……………………………………………31 第四章 實驗設計與方法…………………………………………………………32 4-1 實驗流程圖 ………………………………………………………………32 4-2 實驗材料與儀器設備 ……………………………………………………33 4-2-1 光學元件 …………………………………………………………33 4-2-2 實驗材料 …………………………………………………………34 4-2-3 儀器設備 …………………………………………………………35 4-3 實驗方法 …………………………………………………………………36 4-3-1 系統參數與量測方法 ……………………………………………36 4-3-2雷射光鉗彈性係數的量測…………………………………………38 4-3-3實驗樣本的製備……………………………………………………39 4-4 雷射光鉗對樣本的量測 …………………………………………………41 第五章 結果與討論 ………………………………………………………………42 5-1電壓–位移轉換因子………………………………………………………42 5-2雷射光鉗彈性係數…………………………………………………………45 5-3利用Kramers-Kornig 轉換式求得黏彈模數因子………………………45 5-4褐藻醣膠的黏彈度變化…………………………………………………48 5-5褐藻醣膠黏彈模數變化…………………………………………………50 5-6 褐藻醣膠在不同pH值下黏彈度變化…………………………………… 52 5-7褐藻醣膠在不同溫度下黏彈度變化……………………………………… 54 5-8褐藻醣膠添加鹽類的黏彈度變化 …………………………………………57 第六章 結論…………………………………………………………………………60 第七章 未來展望……………………………………………………………………61 參考文獻 ……………………………………………………………………………62

    1. Ashkin,A.,Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 1970. 24(4): p. 156-159.
    2. James,R.S.and Veigel,C.,Direct observation of the myosin-Va power stroke and its reversal. Nature Structural & Molecular Biology, 2010. 17(5): p. 590-595.
    3. Wang,M.D.,Yin,H., Landick,R.,Gelles, J.and Block,S.M., Stretching DNA with optical tweezers. Biophysical Journal, 1997. 72(3): p. 1335-1346.
    4. Bormuth,V.,Varga,V.,Howard,J.and Schaffer.,Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science, 2009. 325(5942): p. 870-873.
    5. Lyubin,E.V.,Khokhlova,M.D.,Skryabina,M.N.and Fedyanin,A.A., Cellular viscoelasticity probed by active rheology in optical tweezers. Journal of Biomedical Optics, 2012. 17(10): p. 1-4.
    6. Maria D. K, Eugeny V.L, Alexander G.Z, Sophia Y. R, Irina A. S, and Andrey A. F .,Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces.Journal of Biomedical Optics ,2012.17(2).
    7. Bo Li, Fei L, Xinjun W and Ruixiang Z., Fucoidan: Structure and Bioactivity.Molecules 2008.13.
    8. Maria I. B ,Alexey A.G ,Alexander S.S ,Maeve Kelly , Craig J.S ,Nikolay . Nifantiev , Anatolii I. U .,Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima. Elsevier Ltd.2010.2038–2047.
    9. Watanabe, K.and Koyama,Y.I.,Adhesion of macrophages on collagen irradiated with ultraviolet light.Journal of Biomaterials Science-polymer Edition, 1999.10(3): p.351-361.
    10. Pesce, G., Rusciano, G. and Sasso, A., Blinking Optical Tweezers for microrheology measurements of weak elasticity complex fluids. Optics Express, 2010. 18(3): p. 2116-2126.
    11. Furqan M F .Steven M B,Optical tweezers study life under tension Nature Photonics.2011.5,318–321.
    12. Bennett W.and Garrison,W.M.,Production of amide groups and ammonia in the radiolysis of aqueous solutions of protein. Nature, 1959.183: p. 889.
    13. Jerome Pine and Gary Chow ,Moving live dissociated neurons with an optical tweezer. IEEE,2009.p1184-1188.
    14. Balland,M.,Richert,A.and Gallet,F.,The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts.Eur Biophys J, 2005. 34(3): p. 255-61.
    15. Leikina,E.,Mertts,M.V.,Kuznetsova, N. and Leikin, S., Type I collagen is thermally unstable at body temperature. PNAS, 2002. 99(3): p.1314–1318.
    16. Mathias S ,Ulrich F.K, Marc S ,Friedrich Kremer, Optical tweezers to study single Protein A/Immunoglobulin G interactions at varying conditions. Eur Biophys J (2008) 37:927–934.
    17. Pesce,A.Sasso and S.Fusco.,Viscosity measurements on micron-size scale using optical tweezers. Rev. Sci. Instrum,2005.76.
    18. Kato, Y., Uchida, K. and Kawakishi, S., Oxidative degradation of collagen and its model peptide by ultraviolet irradiation.Journal of Agricultural and Food Chemistry, 1992. 40(3): p. 373-379
    19. Latinovic,O.,Hough,L.A.and Ou-Yang,D.,Structural and micromechanical characterization of type I collagen gels. Journal of Biomechanics, 2010. 43(3): p.500-505.
    20. DoYeong K, Weon S, S.,Unique characteristics of self-assembly of bovine serum albumin and fucoidan,an anionic sulfated polysaccharide, under various aqueous environments. Food Hydrocolloids,2015.44.p.471-477
    21. Maria I.B, Alexey A.G, Alexander S.S ,Maeve K, Craig J.S ,Nikolay E.,A and I.Usov ,Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima. Carbohydrate Research , 2010.345 2038–2047
    22. Sezer, A.D.; Hatipoglu, F.; Ogurtan, Z.; Bas, A.L.; Akbuga, J. Evaluation of fucoidan-chitosan hydrogels on superficial dermal burn healing in rabbit: An in vivo Study. J.Biotechnol. 2005,118(suppl.), S77-S77.
    23. Yang,X.L.;Sun,J.Y.;Xu,H.N.An experimental study on immunoregulatory effect of fucoidan.Chin.J.Marine Drugs 1995, 9-13.
    24. Grigorenko, A.N., et al., Nanometric optical tweezers based on nanostructured substrates.Nature Photonics, 2008. 2(6): p. 365-370.
    25. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E. and Chu, S., Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 1986. 11(5): p. 288-290.
    26. Keir C. Neuman and Attila Nagy., Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008 .5(6): 491–505.
    27. Pesce, G., Sasso, A., Fusco, S., Borzacchiello, A. and Netti, P., Optical Tweezers as a tool for microrheology of simplex and complex fluids. SPIE Proceedings, 2004. 5514: p. 487-493.
    28. Chandía, N.P, Matsuhiro, B. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int. J. Biol. Macromol. 2008, 42, 235-240.
    29. Vermeulen, K. C., et al., Optical trap stiffness in the presence and absence of spherical aberrations.Appl Opt, 2006. 45(8): p. 1812-9
    30. 莊迺民“利用自組裝雷射光鉗系統量測膠原蛋白熱降解之黏性變化”NTHU, 2013年.
    31. Vermeulen, K. C., Wuite, G.J.L., Stienen, G.J.M.and Schmidt, C.F., Optical trap stiffness in the presence and absence of spherical aberrations. Applied Optics, 2006. 45(8): p. 1812-1819.
    32. Pesce, G., Luca, A.C.De., Rusciano, G., Netti, P.A., Fusco, S. and Sasso, A., Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements. Journal of Optics A: Pure and Applied Optics, 2009. 11(3): p. 1-11.
    33. Berg S, K. and Flyvbjerg, H., Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 2004. 75(3): p. 594-612.
    34. Chen Y, Donghwa C, Il-Shik S, Hyeon Y L,Jin ChK, Yong J L, Sang G Y , Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules 2008.43:p.433–437
    35. Sang GY, Chen Y, Hyeon Y L, BooY L., Molecular characteristics of partially hydrolyzed fucoidans from sporophyll of Undaria Pinnatifida and their in vitro anticancer activity. Food Chemistry, 2010 p.554–559
    36. Takeshi Teruya , Hideki Tatemoto, Teruko Konishi and Masakuni Tako., Structural characteristics and in vitro macrophage activation of acetyl fucoidan from Cladosiphon okamuranus .Glycoconj J ,2009.26.p:1019–1028
    37. Vermeulen, K. C., Wuite, G.J.L., Stienen, G.J.M.and Schmidt, C.F., Optical trap stiffness in the presence and absence of spherical aberrations. Applied Optics, 2006. 45(8): p. 1812-1819.
    38. Ashkin, A., Force of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime. Biophysical Journal, 1992. 61(2): p. 569-582.
    39. Fang L, Jia W, Alan K. C, Bing L, Lili Y, Qiaomei L ,Peisheng W, Xiangyang Z., Fucoidan extract derived from Undaria pinnatifida inhibits angiogenesis by human umbilical vein endothelial cells. Phytomedicine ,2012 .p.797– 803
    40. Hsu H.Y, Lin T.Y, Hwang P.A, Tseng L.M, Chen R.H, Tsao S.M and Hsu J. , Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFbeta receptor degradation in breast cancer. Carcinogenesis. 2013; 34(4):874-884.
    41. Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y and Kizaki M. , Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol. 2005; 78(1):7-14.
    42. DoYeong K, Weon S.S. , Unique characteristics of self-assembly of bovine serum albumin and fucoidan, an anionic sulfated polysaccharide, under various aqueous environments. Food Hydrocolloids. 2015, p 471–477.
    43. Gittes, F., Schnurr, B., Olmsted, P.D., MacKintosh, F.C. and Schmidt, C.F., Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations. Physical Review Letters, 1997. 79(17): p. 3286-3289.
    44. Mason, T.G. and Weitz, D.A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters, 1995. 74(7): p. 1250-1253.
    45. Nishino, T.; Nagumo, T.; Kiyohara, H., Structure characterization of a new anticoagulant fucansulfate from the brown seaweed Ecklonia kurome. Carbohydr. Res. 1991, 211, 77-90.
    46. Keir C. Neuman and Attila Nagy., Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008,5(6):p 491–505.
    47. Grier, D.G., A revolution in optical manipulation. Nature, 2003. 424: p. 810–816.
    48. 趙亮,陳舜胜,張淑平“海帶中褐藻醣膠的不同提取純化方法的研究“安徽農業科學”,2008.36(15)
    49. Wen H.K., Study on Magnetorheological Damper of Flow Mode.技術學刊2011年(26卷四期)p.17-23
    50. Brau, R.R., et al., Passive and active microrheology with optical tweezers.Journal of Optics a-Pure and Applied Optics, 2007. 9(8):p. S103-S112.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE