簡易檢索 / 詳目顯示

研究生: 胡鴻志
Hu, Hong-Zhi
論文名稱: 使用雙共軛梯度法解非線性泊松-能斯特-普朗克-費米TRPV1通道
Poisson-Nernst-Planck-Fermi Nonlinear Solver for TRPV1 Channels with Bi-Conjugate Gradient Method
指導教授: 劉晉良
Liu, Jinn-Liang
口試委員: 陳仁純
Chen, Ren-Chuen
陳人豪
Chen, Jen-Hao
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 19
中文關鍵詞: 離子通道有限差分法中央處理器圖形處理器泊松-能斯特-普朗克-費米
外文關鍵詞: Poisson-Nernst-Planck-Fermi Nonlinear Solver, CPU,GPU, ion channel, Bi-Conjugate Gradient Method, Finite-Difference Methods
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在動物細胞中,有許多大大小小的離子蛋白質通道,並且我們使用很重要的蛋白質通道之一,即瞬時受體電位陽離子通道(TRPV1)。在本文中,我們使用SOR 和BiCG 的演算法來測試加速速率,因此再次證實BiCG 優於SOR。在本文的最後,我們使用由泊松-能斯特-普朗克-費米模型(PFNP)模擬的TRPV1 離子通道來測試CPU 和GPU 的加速速度,然後使用BiCG 演算法找到可加速6.2 倍。


    Among animal cells, there are many large and small ionic protein channels, and we have used one of the important protein channels, the Transient Receptor Potential Cation Channel (TRPV1). In this paper, we used Successive Over Relaxation (SOR) and BiConjugate Gradient (BiCG) algorithms to test the accelerating rate, and therefore once again confirmed that BiCG is better than SOR. At the end of this paper, we use the TRPV1 ion channel simulated by the Poisson-Nernst-Planck-Fermi model (PFNP) to test the acceleration rate of the CPU and GPU after using the BiCG algorithm to find the acceleration 6.2 times.

    Contents 摘要------------------------------------------------------I Abstract-------------------------------------------------II 1 Introduction--------------------------------------------1 2 Transient Receptor Potential Cation Channel TRPV1-------2 3 Successive Over Relaxation Method-----------------------3 4 BiConjugate Gradient Method-----------------------------6 5 Poisson-Nernst-Planck-Fermi Nonlinear Solver------------8 6 Results------------------------------------------------13 7 Summary------------------------------------------------16 References-----------------------------------------------17

    [1] Clapham, David E and Julius, David and Montell, Craig and Schultz, Günter. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacological reviews, 57 (2005), 427–450.
    [2] Gavva, Narender R and Bannon, Anthony W and Surapaneni, Sekhar and Hovland, David N and Lehto, Sonya G and Gore, Anu and Juan, Todd and Deng, Hong and Han, Bora and Klionsky, Lana and others. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. Journal of Neuroscience, 27 (2007), 3366–3374.
    [3] Szallasi, Arpad and Gunthorpe, Martin J. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Current pharmaceutical design, 14 (2008), 32–41.
    [4] Barrett, Richard and Berry, Michael W and Chan, Tony F and Demmel, James and Donato, June and Dongarra, Jack and Eijkhout, Victor and Pozo, Roldan and Romine, Charles and Van der Vorst, Henk. Templates for the solution of linear systems: building blocks for iterative methods. 43 (1994).
    [5] Holst, Michael J and Saied, Faisal. Numerical solution of the
    nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods. Journal of computational chemistry, 16 (1995), 337–364.
    [6] Davis, Malcolm E and McCammon, J Andrew. Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of
    relaxation and conjugate gradient methods. Journal of computational chemistry, 10 (1989), 386–391.
    [7] Nicholls, Anthony and Honig, Barry. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson Boltzmann equation. Journal of computational chemistry, 12 (1991), 435–445.
    [8] Wang, Jun and Luo, Ray. Assessment of linear finite-difference
    Poisson–Boltzmann solvers. Journal of computational chemistry, 31
    (2010), 1689–1698.
    [9] Van der Vorst, Henk A. Bi-CGSTAB: A fast and smoothly converg-
    ing variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical Computing, 13 (1992), 631–644.
    [10] Chen, Jen-Hao and Chen, Ren-Chuen and Liu, Jinn-Liang. A
    GPU Poisson-Fermi Solver for Ion Channel Simulations. Comput. Phys. Commun, 229 (2018), 99-105.
    [11] Harris, Mark. Optimizing Parallel Reduction in CUDA. Nvidia Developer Technology, Nvidia Corporation (2007).
    [12] Liu, Jinn-Liang and Eisenberg, Bob. Correlated ions in a cal-
    cium channel model: a Poisson–Fermi theory. The Journal of Physical Chemistry B, 117 (2013), 12051–12058.
    [13] Liu, Jinn-Liang and Eisenberg, Bob. Numerical methods for a
    Poisson-Nernst-Planck-Fermi model of biological ion channels. Physical Review E, 92 (2015), 012711.
    [14] Liu, Jinn-Liang and Eisenberg, Bob. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels. The Journal of chemical physics, 141 (2014), 12B640_ 1.
    [15] Liu, Jinn-Liang. Numerical methods for the Poisson–Fermi equation in electrolytes. Journal of Computational Physics, 247 (2013), 88–99.
    [16] Chen, Duanpin and Eisenberg, Robert. Charges, currents, and
    potentials in ionic channels of one conformation. Biophysical journal, 64 (1993), 1405–1421.

    QR CODE