研究生: |
何明融 Ho, Ming-Rong |
---|---|
論文名稱: |
藉由酵素再生焦磷酸及單磷酸腺苷以提昇冷光偵測細菌及生物膜的效果 Enhancing ATP-based luminescence detection of bacteria and biofilm by enzymatic pyrophosphate and AMP regeneration |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 焦磷酸 、冷光偵測 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
測量水中微生物含量有很多方法,其中較快速且靈敏的為冷光偵測法。藉由冷光偵測法可將生物體產生的腺苷三磷酸(ATP)轉換成光,再利用冷光儀測量,即可換算得知水中細菌含量。目前商品化產品可以偵測的微生物極限濃度約在104 CFU/ml ,為了提高偵測靈敏度,本計畫利用大腸桿菌的腺苷二磷酸-葡萄糖焦磷酸酶(ADP-glucose pyrophosphorylase) ,在ADPglucose存在下,與冷光酵素的產物焦磷酸反應,生成ATP與葡萄糖一磷酸(glucose-1-phosphate),形成一個ATP再循環系統,以提高冷光的訊號。此ATP再循環系統的另一優點是比市面上用在焦磷酸測序(pyrosequencing)技術上轉換PPi為ATP的腺苷三磷酸硫酸化酶/五硫磷酸腺苷系統(ATP sulfurylase/adenosine 5´ phosphosulfate system)有較低的背景值。這套ATP再循環系統不管在液態培養基中的大腸桿菌,綠膿桿菌及仙人掌桿菌或是這些菌種形成的生物膜偵測上都有所提昇,能將微生物偵測極限降低至103 CFU/ml。為了更進一步要再提高微生物偵測的靈敏度,我們提出了雙途徑ATP增幅系統 (Bi-directional ATP amplification)的概念,本方法除了利用ATP sulfurylase/adenosine 5´ phosphosulfate轉換PPi為ATP外,同時利用腺苷酸激酶(adenylate kinase)將尿苷三磷酸(UTP)做為能量提供者把發光酵素的另一個產物腺苷單磷酸(AMP)轉為腺苷雙磷酸(ADP),再利用醋酸激酶(acetate kinase)在乙醯磷酸(acetyl phosphate)存在下將ADP轉成ATP,藉由兩邊同時再生ATP的形式,穩定增加ATP的量以大幅提高冷光訊號的效果,克服ATP sulfurylase/adenosine 5´ phosphosulfate system產生的背景值,並達到102 CFU/ml 的微生物偵測極限。而ATP再循環系統除了可以提昇水中微生物偵測的效果外,未來也可運用於分子診斷相關的檢測中,迅速放大反應產物焦磷酸以得到冷光訊號。
The manufacturing processes of many electronic and medicinal products demand the use of high-quality water. Hence the water supply systems for these processes are required to be examined regularly for the presence of microorganisms and microbial biofilm. Several bacteria detection methods have been employed for this purpose including ATP luminescence assay, polymerase chain reactions, fluorescent in situ hybridization, and a β-glucuronidase-based assay. Among them, the ATP luminescence assay is a rapid, sensitive and easy to perform method. The first aim of this study is to investigate whether ATP regeneration from inorganic pyrophosphate (PPi), a product of the ATP luminescence assay, can stabilize the bioluminescence signals in ATP detection. ADPglc pyrophosphorylase (AGPPase), which catalyzes the synthesis of ATP from PPi in the presence of ADPglc, was selected because the system yields much lower luminescence background than the commercially available ATP sulfurylase/adenosine 5´ phosphosulfate (APS) system which was broadly used in pyrosequencing technology. The method could also be used to stabilize the luminescence signals in detection of Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus either in broth or biofilm, and a detection limitation of 103 CFU/ml can be achieved. The second aim of this study is to increase the detection sensitivity from 104 CFU/ml to 102 CFU/ml of bacteria. One possible approach is to regenerate ATP simultaneously from both AMP and PPi, two major products of ATP luminescence assay, in a one-tube reaction. Regenerating AMP into ATP involves two consecutive enzyme reactions: adenylate kinase converting AMP and UTP into ADP and UDP; followed by acetate kinase catalyzing acetyl phosphate and ADP into ATP and acetate. Unfortunately, the AGPPase-based assay resulted in a high luminescence background when coupled with adenylate kinase. Therefore, ATP sulfurylase/APS system was used in the AMP-PPi Bi-directional ATP amplification (BDAA) system to replace AGPPase-based assay. These findings indicate that the AGPPase-based and the AMP-PPi bi-pathway ATP regeneration systems could increase the detection limitation to 102 CFU which will find many practical applications such as detection of bacterial biofilm in water pipelines.
1. Hogardt, M., Trebesius, K., Geiger, A. M., Hornef, M., Rosenecker, J., and Heesemann, J. (2000) Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients, J Clin Microbiol 38, 818-825.
2. George, I., Crop, P., and Servais, P. (2001) Use of beta-D-galactosidase and beta-D-glucuronidase activities for quantitative detection of total and fecal coliforms in wastewater, Can J Microbiol 47, 670-675.
3. McElroy, W. D., and DeLuca, M. A. (1983) Firefly and bacterial luminescence: basic science and applications, J Appl Biochem 5, 197-209.
4. Thore, A., Ansehn, S., Lundin, A., and Bergman, S. (1975) Detection of bacteriuria by luciferase assay of adenosine triphosphate, J Clin Microbiol 1, 1-8.
5. Selan, L., Berlutti, F., Passariello, C., Thaller, M. C., and Renzini, G. (1992) Reliability of a Bioluminescence Atp Assay for Detection of Bacteria, Journal of Clinical Microbiology 30, 1739-1742.
6. Whitehead, K. A., Smith, L. A., and Verran, J. (2008) The detection of food soils and cells on stainless steel using industrial methods: UV illumination and ATP bioluminescence, Int J Food Microbiol 127, 121-128.
7. Beckers, B., and Lang, H. R. (1983) Rapid diagnosis of bacteraemia by measuring bacterial adenosine triphosphate in blood culture bottles using bioluminescence, Med Microbiol Immunol 172, 117-122.
8. Satoh, T., Kato, J., Takiguchi, N., Ohtake, H., and Kuroda, A. (2004) ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell, Biosci Biotechnol Biochem 68, 1216-1220.
9. Tanaka, S., Kuroda, A., Kato, J., Ikeda, T., Takiguchi, N., and Ohtake, H. (2001) A sensitive method for detecting AMP by utilizing polyphosphate-dependent ATP regeneration and bioluminescence reactions, Biochem Eng J 9, 193-197.
10. Kameda, A., Shiba, T., Kawazoe, Y., Satoh, Y., Ihara, Y., Munekata, M., Ishige, K., and Noguchi, T. (2001) A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase, J Biosci Bioeng 91, 557-563.
11. Shiba, T., Itoh, H., Kameda, A., Kobayashi, K., Kawazoe, Y., and Noguchi, T. (2005) Polyphosphate:AMP phosphotransferase as a polyphosphate-dependent nucleoside monophosphate kinase in Acinetobacter johnsonii 210A, J Bacteriol 187, 1859-1865.
12. Ishige, K., and Noguchi, T. (2000) Inorganic polyphosphate kinase and adenylate kinase participate in the polyphosphate:AMP phosphotransferase activity of Escherichia coli, Proc Natl Acad Sci U S A 97, 14168-14171.
13. Satoh, T., Tsuruta, K., Shinoda, Y., Hirota, R., Noda, K., Kuroda, A., and Murakami, Y. (2009) Reciprocating-flow ATP amplification system for increasing the number of amplification cycles, Anal Biochem 395, 161-165.
14. Sun, Y., Jacobson, K. B., and Golovlev, V. (2007) A multienzyme bioluminescent time-resolved pyrophosphate assay, Anal Biochem 367, 201-209.
15. Jin, X., Ballicora, M. A., Preiss, J., and Geiger, J. H. (2005) Crystal structure of potato tuber ADP-glucose pyrophosphorylase, EMBO J 24, 694-704.
16. Ballicora, M. A., Iglesias, A. A., and Preiss, J. (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis, Microbiol Mol Biol Rev 67, 213-225, table of contents.
17. Frueauf, J. B., Ballicora, M. A., and Preiss, J. (2001) Aspartate residue 142 is important for catalysis by ADP-glucose pyrophosphorylase from Escherichia coli, Journal of Biological Chemistry 276, 46319-46325.
18. Hwang, S. K., Salamone, P. R., Kavakli, H., Slattery, C. J., and Okita, T. W. (2004) Rapid purification of the potato ADP - glucose pyrophosphorylase by polyhistidine-mediated chromatography, Protein Expres Purif 38, 99-107.
19. Uttaro, A. D., Ugalde, R. A., Preiss, J., and Iglesias, A. A. (1998) Cloning and expression of the glgC gene from Agrobacterium tumefaciens: purification and characterization of the ADPglucose synthetase, Arch Biochem Biophys 357, 13-21.
20. Bejar, C. M., Ballicora, M. A., Gomez-Casati, D. F., Iglesias, A. A., and Preiss, J. (2004) The ADP-glucose pyrophosphorylase from Escherichia coli comprises two tightly bound distinct domains, FEBS Lett 573, 99-104.
21. Yung, S. G., and Preiss, J. (1981) Biosynthesis of bacterial glycogen: purification and structural properties of Rhodospirillum tenue adenosine diphosphate glucose synthetase, J Bacteriol 147, 101-109.
22. Leung, P., Lee, Y. M., Greenberg, E., Esch, K., Boylan, S., and Preiss, J. (1986) Cloning and Expression of the Escherichia-Coli Glgc Gene from a Mutant Containing an Adpglucose Pyrophosphorylase with Altered Allosteric Properties, J Bacteriol 167, 82-88.
23. Preiss, J., Greenberg, E., and Sabraw, A. (1975) Biosynthesis of bacterial glycogen. Kinetic studies of a glucose-1-phosphate adenylyltransferase (EC 2.7.7.27) from a glycogen-deficient mutant of Escherichia coli B, J Biol Chem 250, 7631-7638.
24. Charng, Y. Y., Sheng, J., and Preiss, J. (1995) Mutagenesis of an amino acid residue in the activator-binding site of cyanobacterial ADP-glucose pyrophosphorylase causes alteration in activator specificity, Arch Biochem Biophys 318, 476-480.
25. Wu, M. X., and Preiss, J. (1998) The n-terminal region is important for the allosteric activation and inhibition of the Escherichia coli ADP-glucose pyrophosphorylase, Archives of Biochemistry and Biophysics 358, 182-188.
26. Ronaghi, M. (2001) Pyrosequencing sheds light on DNA sequencing, Genome Res 11, 3-11.
27. Gharizadeh, B., Norberg, E., Loffler, J., Jalal, S., Tollemar, J., Einsele, H., Klingspor, L., and Nyren, P. (2004) Identification of medically important fungi by the Pyrosequencing technology, Mycoses 47, 29-33.
28. Ahmadian, A., Lundeberg, J., Nyren, P., Uhlen, M., and Ronaghi, M. (2000) Analysis of the p53 tumor suppressor gene by pyrosequencing, Biotechniques 28, 140-144, 146-147.
29. Eriksson, J., Gharizadeh, B., Nourizad, N., and Nyren, P. (2004) 7-Deaza-2'-deoxyadenosine-5'-triphosphate as an alternative nucleotide for the pyrosequencing technology, Nucleosides Nucleotides Nucleic Acids 23, 1583-1594.
30. Duggleby, R. G., Peng, H. L., and Chang, H. Y. (1996) An improved assay for UDPglucose pyrophosphorylase and other enzymes that have nucleotide products, Experientia 52, 568-572.
31. Ballicora, M. A., Sesma, J. I., Iglesias, A. A., and Preiss, J. (2002) Characterization of chimeric ADPglucose pyrophosphorylases of Escherichia coli and Agrobacterium tumefaciens. Importance of the C-terminus on the selectivity for allosteric regulators, Biochemistry 41, 9431-9437.
32. O'Toole, G. A., and Kolter, R. (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol Microbiol 28, 449-461.
33. Hung, R. J., Chien, H. S., Lin, R. Z., Lin, C. T., Vatsyayan, J., Peng, H. L., and Chang, H. Y. (2007) Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1, J Biol Chem 282, 17738-17748.
34. Kochanowski, N., Blanchard, F., Cacan, R., Chirat, F., Guedon, E., Marc, A., and Goergen, J. L. (2006) Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC, Anal Biochem 348, 243-251.
35. Nyren, P., and Lundin, A. (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis, Anal Biochem 151, 504-509.
36. Zhou, G., Kajiyama, T., Gotou, M., Kishimoto, A., Suzuki, S., and Kambara, H. (2006) Enzyme system for improving the detection limit in pyrosequencing, Anal Chem 78, 4482-4489.
37. Lascu, I., and Gonin, P. (2000) The catalytic mechanism of nucleoside diphosphate kinases, J Bioenerg Biomembr 32, 237-246.
38. Fujii, H., Noda, K., Asami, Y., Kuroda, A., Sakata, M., and Tokida, A. (2007) Increase in bioluminescence intensity of firefly luciferase using genetic modification, Anal Biochem 366, 131-136.
39. Noda, K., Goto, H., Murakami, Y., Ahmed, A. B. F., and Kuroda, A. (2010) Endotoxin assay by bioluminescence using mutant firefly luciferase, Analytical Biochemistry 397, 152-155.
40. Resnick, S. M., and Zehnder, A. J. (2000) In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A, Appl Environ Microbiol 66, 2045-2051.
41. Satoh, T., Shinoda, Y., Alexandrov, M., Kuroda, A., and Murakami, Y. (2008) Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay, Anal Biochem 379, 116-120.
42. Hill, M. A., Kaufmann, K., Otero, J., and Preiss, J. (1991) Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli, J Biol Chem 266, 12455-12460.
43. Ghosh, P., Meyer, C., Remy, E., Peterson, D., and Preiss, J. (1992) Cloning, expression, and nucleotide sequence of glgC gene from an allosteric mutant of Escherichia coli B, Arch Biochem Biophys 296, 122-128.
44. Charng, Y. Y., Iglesias, A. A., and Preiss, J. (1994) Structure-function relationships of cyanobacterial ADP-glucose pyrophosphorylase. Site-directed mutagenesis and chemical modification of the activator-binding sites of ADP-glucose pyrophosphorylase from Anabaena PCC 7120, J Biol Chem 269, 24107-24113.
45. Arakawa, H., Karasawa, K., Igarashi, T., Suzuki, S., Goto, N., and Maeda, M. (2004) Detection of cariogenic bacteria genes by a combination of allele-specific polymerase chain reactions and a novel bioluminescent pyrophosphate assay, Anal Biochem 333, 296-302.
46. Dusserre, E., Ginevra, C., Hallier-Soulier, S., Vandenesch, F., Festoc, G., Etienne, J., Jarraud, S., and Molmeret, M. (2008) A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but noncultivable legionellae that can recover their cultivability, Appl Environ Microbiol 74, 4817-4824.
47. Sen, K., Schable, N. A., and Lye, D. J. (2007) Development of an internal control for evaluation and standardization of a quantitative PCR assay for detection of Helicobacter pylori in drinking water, Appl Environ Microbiol 73, 7380-7387.
48. Imamura, O., Arakawa, H., and Maeda, M. (2003) Simple and rapid bioluminescent detection of two verotoxin genes using allele-specific PCR of E. coli O157: H7, Luminescence 18, 107-112.
49. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and Hase, T. (2000) Loop-mediated isothermal amplification of DNA, Nucleic Acids Res 28, E63.
50. Matsuzawa, T., Tanaka, R., Horie, Y., Gonoi, T., and Yaguchi, T. (2010) Development of rapid and specific molecular discrimination methods for pathogenic emericella species, Nippon Ishinkin Gakkai Zasshi 51, 109-116.
51. Lu, Q., and Inouye, M. (1996) Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism, Proc Natl Acad Sci U S A 93, 5720-5725.