簡易檢索 / 詳目顯示

研究生: 陳政安
Chen Cheng-An
論文名稱: 利用穿透式電子顯微鏡分析奈米碳管之結構參數
Studying the transmission electron microscopy characteristics of a selected carbon nanotube
指導教授: 邱博文
Chiu Po-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 奈米碳管化學氣相沈積法懸空奈米碳管穿透式電子顯微鏡結構參數
外文關鍵詞: CNT, CVD, Free-standing CNT, TEM, index
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子元件不斷的縮小,成本也不斷的降低,在這個過程中,縮小
    化的技術遇到了瓶頸,而使部分科學家轉為研究奈米級的材料。奈米
    碳管是近來最熱門的奈米材料之一,具有許多優越的性質,值得我們
    進一步去探討與研究,其中我們有興趣的是奈米碳管結構與電學性質
    的關係。
    本實驗利用傳統的光學微影與電子束微影製程製做出奈米碳管
    元件的電極,而奈米碳管則用化學處理的方式沈積在基板上或是利用
    溼式催化劑配合化學氣相沈積法直接長在基板上,配合試片劈裂的製
    程在基板邊緣做出奈米碳管的元件結構,並結合微機電常用的側蝕刻
    技術,使奈米碳管懸空在基板邊緣,這個技術使我們可以量測特定奈
    米碳管的電學性質又利用穿透式電子顯微鏡量這根測奈米碳管的的
    結構參數,這是傳統製程無法達到的。
    這個技術的想法很直接,但是製程的步驟很多道,所以必須小心
    謹慎。有了這個技術以後,我們也期許將來能夠把這個技術應用在別
    的奈米材料上,或是配合穿透式電子顯微鏡更深入研究奈米碳管結構
    與其它物理性質的關係。


    目錄 序5 1 奈米碳管- 結構與性質7 1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 奈米碳管的發現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 奈米碳管的結構與分類. . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 奈米碳管的製造. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 奈米碳管的電子能帶結構. . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 奈米碳管的振動性質. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 奈米碳管的應用前景. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 奈米碳管之定位成長與結構參數之分析23 2.1 單壁奈米碳管的成長機制與定位成長. . . . . . . . . . . . . . . . . . 23 2.2 奈米碳管性質量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 利用拉曼光譜分析碳管的結構參數. . . . . . . . . . . . . . . 26 2.2.2 利用穿透式電子顯微鏡分析碳管的結構參數. . . . . . . . . . . 27 3 製程與實驗裝置31 3.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 實驗參數與製程流程圖. . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 奈米碳管電子元件製備. . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 製程動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 光學微影. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 4 3.3.3 電子束微影. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.4 化學處理沈積奈米碳管. . . . . . . . . . . . . . . . . . . . . . 34 3.3.5 直接成長奈米碳管於晶片基板. . . . . . . . . . . . . . . . . . 35 3.3.6 元件的源極與汲極. . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 奈米碳管之電子束繞射樣品製備. . . . . . . . . . . . . . . . . . . . . 36 3.4.1 製程動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.2 試片劈裂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.3 側蝕刻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.4 臨界點乾燥法. . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.5 TEM 試片. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 實驗參數與實驗儀器名稱型號. . . . . . . . . . . . . . . . . . . . . . 41 4 利用溼式催化劑長出單壁奈米碳管43 4.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 化學氣相沈積法裝置. . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 溼式催化劑的製備. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 單壁奈米碳管成長條件. . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 拉曼光譜量測與原子力顯微鏡圖. . . . . . . . . . . . . . . . . . . . . 44 4.5.1 奈米碳管的RBM 訊號分析. . . . . . . . . . . . . . . . . . . 45 4.5.2 奈米碳管的G 模式與D 模式的分析. . . . . . . . . . . . . . 47 4.5.3 奈米碳管的原子力顯微鏡分析. . . . . . . . . . . . . . . . . . 47 4.6 在矽基板上定位成長奈米碳管. . . . . . . . . . . . . . . . . . . . . . 49 5 穿透式電子顯微鏡量測53 5.1 穿透式電子顯微鏡簡介. . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1.1 穿透式電子顯微鏡原理及硬體設備. . . . . . . . . . . . . . . 53 5.1.2 穿透式電子顯微鏡之成像與繞射. . . . . . . . . . . . . . . . . 57 5.2 穿透式電子顯微鏡結構觀測. . . . . . . . . . . . . . . . . . . . . . . 59 5.3 電子束繞射圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 總結與未來展望65

    參考文獻
    [1] 成會明, 奈米碳管, 張勁燕和陳佩芬, Ed. 五南圖書出版股份有限公司, 2004.
    [2] 莊鎮宇, “The study of growth mechanism of carbon nanotubes using thermal
    pyrolysis chemical vapor deposition method,” Ph.D. dissertation, 國立清華大
    學工程與系統科學系, 1994.
    [3] 陳力俊, 材料分析. 中國材料學學會, 2001, ch. 8-分析式電子顯微鏡分析, p. 175.
    [4] 蔡淑慧, “,” 奈米通訊, vol. 第12卷第二期, p. 47, 2005.
    [5] 蘇煥傑, “On the roles of multilayered metal catalysts in the synthesis of highquality
    single-walled carbon nanotubes,” Master’s thesis, 國立清華大學工程與
    系統科學系, 1994.
    [6] “wikipedia,” http://en.wikipedia.org/wiki/SWNT.
    [7] “wikipedia,” http://en.wikipedia.org/wiki/Cauchy_distribution.
    [8] “wikipedia,” http://en.wikipedia.org/wiki/Polydimethylsiloxane.
    [9] “wikipedia,” http://en.wikipedia.org/wiki/CO2.
    [10] S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B.
    Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown
    using a solid supported catalyst,” J. Am. Chem. Soc., vol. 125, p. 11186, 2003.
    [11] S. M. Bachilo, M. S. S. C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman,
    “Structure-assigned optical spectra of single-walled carbon nanotubes,”
    Science, vol. 298, p. 2361, 2002.
    67
    68
    [12] S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito,
    and K. Kneipp, “Origin of the Breit-Wigner-Fano lineshape of the tangential Gband
    feature of metallic carbon nanotubes,” Phys. Rev. B., vol. 63, p. 155414,
    2001.
    [13] A. M. Cassell, N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han, and
    H. Dai, “Directed growth of free-standing single-walled carbon nanotubes,” J.
    Am. Chem. Soc., vol. 121, pp. 7975–7976, 1999.
    [14] J.-F. Colomer, L. Henrard, P. Lambin, and G. V. Tendeloo1, “Electron diffraction
    study of small bundles of single-wall carbon nanotubes with unique helicity,”
    Phys. Rev. B, vol. 64, p. 125425, 2001.
    [15] J. M. Cowley, “Electron nanodiffraction: Progress and prospects,” J Electron
    Microsc, vol. 45-1, p. 3, 1996.
    [16] M. S. Dresselhaus and P. C. Eklund, “Phonons in carbon nanotubes,” Advances
    in Physics, vol. 49, pp. 705–814, 2000.
    [17] M. Dresselhaus, G. Dresselhaus, and P. Avouris, “Carbon nanotubes.”
    [18] M. Gao, J. M. Zuo, R. D. Twesten, I. Petrov, L. A. Nagahara, and
    R. Zhang, “Structure determination of individual single-wall carbon nanotubes
    by nanoarea electron diffraction,” Appl. Phys. Lett., vol. 82, p. 16, 2003.
    [19] J. G.Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker,
    “Electronic structure of atomically resolved carbon nanotubes,” Nature, vol.
    391, p. 59, 1998.
    [20] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima,
    “Water-assisted highly efficient synthesis of impurity-free single-walled carbon
    nanotubes,” Science, vol. 306, p. 1362, 2004.
    [21] S. Iijima., “Helical microtubules of graphitic carbon,” Nature, vol. 354, p. 56,
    1991.
    69
    [22] S. Iijima, “Growth of carbon nanotubes,” Mater. Sci. Eng. B, vol. 19, p. 172,
    1993.
    [23] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,”
    Nature, vol. 363, p. 603, 1993.
    [24] A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S.
    ¨U
    nl¨u, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito,
    “G-band resonant Raman study of 62 isolated single-wall carbon nanotubes,”
    Phys. Rev. B., vol. 65, p. 155412, 2002.
    [25] A. Jorio, M. A. Pimenta, A. G. S. Filho, R. Saito, G. Dresselhaus, and M. S.
    Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman
    scattering,” New Journal of Physics, vol. 5, pp. 139.1–139.17, 2003.
    [26] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus,
    and M. S. Dresselhaus, “Structural (n,m) determination of isolated
    single-wall carbon nanotubes by resonant raman scattering,” Phys. Rev. Lett.,
    vol. 86, p. 1118, 2001.
    [27] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Uemezu, S. Suzuki, Y. Ohtsuka,
    and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synthetic
    Metals, vol. 103, pp. 2555–2558, 1999.
    [28] J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane
    for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, pp. 567–574,
    1998.
    [29] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. Dai, “Synthesis of
    individual singlewalled carbon nanotubes on patterned siliconwafers,” Nature,
    vol. 395, p. 878, 1998.
    [30] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of
    silicon,” IEEE, vol. 86-8, p. 1536, 1998.
    70
    [31] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60:
    Buckminsterfullerene,” Nature, vol. 318, p. 162, 1985.
    [32] J. C. Meyer, D. Obergfell, S. Roth, S. Yang, and S. Yang, “Transmission electron
    microscopy and transistor characteristics of the same carbon nanotube,”
    Appl. Phys. Lett., vol. 85, p. 2911, 2004.
    [33] J. C. Meyer, “Structure and properties of carbon nanotubes,” Ph.D. dissertation,
    Max Planck Institut for solid state research, Stuttgart, 2005.
    [34] J. C. Meyer, M. Paillet, G. S. Duesberg, and S. Roth, “Electron diffraction
    analysis of individual single-walled carbon nanotubes,” Ultramicroscopy, in
    press (available online under  articles in press”).
    [35] Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama.,
    “Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from
    alcohol,” Chem. Phys. Lett., vol. 387, p. 198, 2004.
    [36] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Atomic structure
    and electronic properties of single-walled carbon nanotubes,” Nature, vol. 391,
    p. 62, 1998.
    [37] K. E. Petersen, “Silicon as a mechanical material,” IEEE, vol. 70-5, p. 420,
    1982.
    [38] L.-C. Qin, S. Iijima, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Helicity
    and packing of single-walled carbon nanotubes studied by electron nanodiffraction,”
    Chem. Phys. Lett., vol. 268, pp. 101–106, 1997.
    [39] R. Saito, G. Dresselhaus, and M. S. Dresselhaus., Physical Properties of Carbon
    Nanotubes. Imperial College Press, 1998, ch. 2, p. 17.
    [40] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
    Nanotubes. Imperial College Press, 1998, ch. 4, p. 59.
    71
    [41] R. V. Seidel, “Carbon nanotube devices,” Ph.D. dissertation, Technischen
    Universit¨at Dresden, 2004.
    [42] M. Y. Sfeir, T. Beetz, F.Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone,
    S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus1,
    “Optical spectroscopy of individual single-walled carbon nanotubes of defined
    chiral structure,” Science, vol. 312, p. 554, 2006.
    [43] M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’Brien, T. F.
    Heinz, and L. E. Brusl, “Probing electronic transitions in individual carbon
    nanotubes by rayleigh scattering,” Science, vol. 306, p. 1540, 2004.
    [44] H. T. Soh, C. F. Quatea, A. F. Morpurgo, C. M. Marcus, J. Kong, and H. Dai,
    “Integrated nanotube circuits: Controlled growth and ohmic contacting of
    single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 75-5, p. 627, 1999.
    [45] H. Telg, J. Maultzsch, S. Reich, F. Hennrich, , and C. Thomsen, “Chirality
    distribution and transition energies of carbon nanotubes.” Phys. Rev. Lett.,
    vol. 93, p. 177401, 2004.
    [46] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H.
    Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E.
    Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,”
    Science, vol. 273, pp. 483–487, 1996.
    [47] L. C. Venema, V. Meunier, P. Lambin, and C. Dekker, “Atomic structure of
    carbon nanotubes from scanning tunneling microscopy,” Phys. Rev. B, vol. 61,
    p. 2991, 2000.
    [48] L. Vitali, M. Burghard, M. A. Schneider, L. Liu, S. Y. Wu, C. S. Jayanthi, and
    K. Kern, “Phonon spectromicroscopy of carbon nanostructures with atomic
    resolution,” Phys. Rev. Lett., vol. 93, p. 136103, 2004.
    [49] D. B. Williams and C. B. Carter, Transmission Electron Microscopy. Plenum
    Press, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE