研究生: |
劉子齊 Liu, Tzu-Chi |
---|---|
論文名稱: |
使用最佳化收縮估計法與時頻濾波器進行暫態音誘發性耳聲傳射訊號之降噪 Denoising Click-Evoked Otoacoustic Emissions by Optimal Shrinkage and Time-Frequency Filtering |
指導教授: |
劉奕汶
Liu, Yi-Wen |
口試委員: |
黃元豪
Huang, Yuan-Hao 李夢麟 Li, Meng-Lin 楊立威 Yang, Lee-Wei 李沛群 Li, Pei-Chun 吳浩榳 Wu, Hau-Tieng |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 耳聲傳射 、矩陣降噪 、最佳化收縮估計法 、時頻濾波器 |
外文關鍵詞: | otoacoustic emissions, matrix denoising, optimal shrinkage, time-frequency filtering |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
暫態音誘發性耳聲傳射(click-evoked otoacoustic emission, CEOAE)訊號在臨床上常用於新生兒聽力篩檢,由於CEOAE訊號的強度通常低於背景雜訊,其量測需要以數百、數千次的平均來估測埋藏在雜訊裡的訊號。本論文提出兩個方法來降噪CEOAE訊號:時頻濾波器(time-frequency filtering)與最佳化收縮估計法(optimal shrinkage),其中最佳估計法有兩種版本:共變異數矩陣為基底與奇異值分解為基底;除此之外本研究也實作了使用適應性步驟找濾波區間的時頻濾波器、最佳化收縮估計法與時頻濾波器的組合、以及兩種針對最佳化收縮估計法的改動:滑動窗口最佳化收縮估計法以及逐塊最佳化收縮估計法。在模擬的CEOAE訊號上,共變異數矩陣的最佳化收縮估計法對比取資料中位數的基本方法,可以穩定增加訊雜比1到2 dB,而奇異值分解的最佳化收縮估計法可以提升3 dB訊雜比、時頻濾波器可以提升6 dB訊雜比。在真實的CEOAE訊號上,奇異值分解的最佳化收縮估計法可以穩定的提升訊雜比,而且原始訊雜比越低提升的幅度就越高;時頻濾波器只對使用非線性量測法的資料有效,而提升的訊雜比優於最佳化收縮估計法。滑動窗口法可以額外增加2 dB訊雜比,而將奇異值分解的最佳化收縮估計法使用在時頻濾波器之前可以額外增加1到2 dB訊雜比。單純考慮CEOAE訊號的降噪,最佳化收縮估計法無法贏過時頻濾波器,但最佳化收縮估計法的優勢是降噪所有訊號而不是只有平均後的訊號,這個特性讓研究長時間CEOAE的動態性成為可能。
Click-evoked otoacoustic emissions (CEOAEs) are clinically used as an objective way to infer whether cochlear functions are normal. However, because the sound pressure level of CEOAEs is typically much lower than the background noise, it usually takes hundreds, if not thousands of repetitions to estimate the signal with sufficient accuracy. In this thesis, we propose to improve the signal-to-noise ratio (SNR) of CEOAE signals within limited measurement time by time-frequency filtering (TF) and optimal shrinkage (OS) in two different settings: covariance-based OS (cOS) and singular value decomposition (SVD)-based OS (sOS). We also implemented Wiener filtering (WF), an adaptive procedure for finding the T-F region for the time-frequency filtering, combined the sOS and the TF, and presented two approaches to improve the performance of sOS: window-based sOS (wOS) and block-wise sOS (bOS). By simulation, the WF and the cOS consistently enhanced the SNR by 1 to 2 dB from a baseline method (BM) that is based on calculating the median. The sOS could enhance the SNR by over 3 dB and the TF even achieved 6 dB enhancement. In real data, the sOS improved the SNR consistently, and the level of enhancement increases as the baseline SNR decreases. The TF only worked on the CEOAE signals measured by nonlinear protocol, and it provides greater SNR enhancement than the sOS. The wOS further improved the SNR by 2 dB from the sOS, and applying sOS before TF further improved the SNR by 1 to 2 dB from the TF. For the denosing of CEOAE signals, the performance of TF is better than OS. Nonetheless, an appealing property of OS is that it produces an estimate of all single trials. This property makes it possible to investigate CEOAE dynamics across a longer period of time when the cochlear conditions are not strictly stationary.
[1] D. L. Donoho, M. Gavish, and I. M. Johnstone, “Optimal shrinkage of eigenvalues in the spiked covariance model,” Ann. Stat., vol. 46, no. 4, p. 1742, 2018.
[2] D. T. Kemp, “Otoacoustic emissions, travelling waves and cochlear mechanisms,”Hearing Research, vol. 22, no. 13, pp. 95–104, 1986.
[3] L. Collet, M. Gartner, A. Moulin, I. Kauffmann, and F. Disant, “Evoked otoacoustic emissions and sensorineural hearing loss,” Archives of Otolaryngology–Head & Neck Surgery, vol. 115, no. 9, pp. 1060–1062, 1989.
[4] A. J. Hall and M. E. Lutman, “Methods for early identification of noiseinduced hearing loss,” Audiology, vol. 38, no. 5, pp. 277–280, 1999.
[5] M. A. Hotz, R. Probst, F. P. Harris, and R. Hauser, “Monitoring the effects of noise exposure using transiently evoked otoacoustic emissions,” Acta Otolaryngologica, vol. 113, no. 4, pp. 478–482, 1993.
[6] A. Moleti, R. Sisto, G. Tognola, M. Parazzini, P. Ravazzani, and F. Grandori, “Otoacoustic emission latency, cochlear tuning, and hearing functionality in neonates,” J. Acoust. Soc. Amer., vol. 118, no. 3, pp. 1576–1584, 2005.
[7] G. Tognola, M. Parazzini, P. De Jager, P. Brienesse, P. Ravazzani, and F. Grandori,“Cochlear maturation and otoacoustic emissions in preterm infants: a time–frequency approach,” Hearing Research, vol. 199, no. 12, pp. 71–80, 2005.
[8] J. J. Guinan Jr, B. C. Backus, W. Lilaonitkul, and V. Aharonson, “Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs,” J. Assoc. Res. Otolaryngol., vol. 4, no. 4, pp. 521–540, 2003.
[9] C. Abdala, S. K. Mishra, and T. L. Williams, “Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex,”J. Acoust. Soc. Amer., vol. 125, no. 3, pp. 1584–1594, 2009.
[10] S. S. Goodman, C. Lee, J. J. Guinan Jr, and J. T. Lichtenhan, “The spatial origins of cochlear amplification assessed by stimulus-frequency otoacoustic emissions,”Biophysical Journal, vol. 118, no. 5, pp. 1183–1195, 2020.
[11] Y. W. Liu and S. T. Neely, “Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells,” J. Acoust. Soc. Amer., vol. 127, no. 4, pp. 2420–2432, 2010.
[12] S. Verhulst, T. Dau, and C. A. Shera, “Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission,” J. Acoust. Soc. Amer., vol. 132, pp. 3842–3848, 2012.
[13] T. Bowling, C. Lemons, and J. Meaud, “Reducing tectorial membrane viscoelasticity enhances spontaneous otoacoustic emissions and compromises the detection of low level sound,” Scientific Reports, vol. 9, p. 7494, 2019.
[14] Y. W. Liu and T. C. Liu, “Quasilinear reflection as a possible mechanism for suppressor-induced otoacoustic emission,” J. Acoust. Soc. Amer., vol. 140, no. 6, pp. 4193–4203, 2016.
[15] V. Vencovský, A. Vetešník, and A. W. Gummer, “Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression,” J. Acoust. Soc. Amer., vol. 147, pp. 3992–4008, 2020.
[16] D. T. Kemp, “Stimulated acoustic emissions from within the human auditory system,”J. Acoust. Soc. Amer., vol. 64, no. 5, pp. 1386–1391, 1978.
[17] T.C. Liu, H.T. Wu, Y.H. Chen, Y.H. Chen, P.C. Fang, P.C. Wang, and Y.W. Liu, “Analysis of click-evoked otoacoustic emissions by concentration of frequency and time: Preliminary results from normal hearing and ménière's disease ears,”in AIP Conference Proceedings, vol. 1965, p. 170005, 2018.
[18] Y.W. Liu, S.L. Kao, H.T. Wu, T.C. Liu, T.Y. Fang, and P.C. Wang, “Transient-evoked otoacoustic emission signals predicting outcomes of acute sensorineural hearing loss in patients with meniere's disease,”Acta OtoLaryngologica, vol. 140, no. 3, pp. 230–235, 2020.
[19] D. H. Keefe, M. P. Feeney, L. L. Hunter, and D. F. Fitzpatric, “Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli,” J. Acoust. Soc. Amer., vol. 140, no. 3, pp. 1949–1973, 2016.
[20] C. L. Talmadge, A. Tubis, G. R. Long, and P. Piskorski, “Modeling otoacoustic emission and hearing threshold fine structures,” J. Acoust. Soc. Amer., vol. 104, no. 3, pp. 1517–1543, 1998.
[21] M. Biswal and S. K. Mishra, “Comparison of time-frequency methods for analyzing stimulus frequency otoacoustic emissions,” J. Acoust. Soc. Amer., vol. 143, no. 2, pp. 626–639, 2018.
[22] G. Notaro, A. M. AlMaamury, A. Moleti, and R. Sisto, “Wavelet and matching pursuit estimates of the transient-evoked otoacoustic emission latency,” J. Acoust. Soc. Amer., vol. 122, no. 6, pp. 3576–3585, 2007.
[23] G. Tognola, F. Grandori, and R. Ravazzani, “Time-frequency distributions of click-evoked otoacoustic emissions,” Hearing Research, vol. 106, no. 12, pp. 112–122, 1997.
[24] A. Moleti and R. Sisto, “Objective estimates of cochlear tuning by otoacoustic emission analysis,” J. Acoust. Soc. Amer., vol. 113, no. 1, pp. 423–429, 2003.
[25] H. T. Wu and Y. W. Liu, “Analyzing transient-evoked otoacoustic emissions by concentration of frequency and time,” J. Acoust. Soc. Amer., vol. 144, no. 1, pp. 448–466, 2018.
[26] R. Sisto and A. Moleti, “Transient-evoked otoacoustic emission latency and cochlear tuning at different stimulus levels,” J. Acoust. Soc. Amer., vol. 122, no. 4, pp. 2183–2190, 2007.
[27] W. W. Jedrzejczak, A. Bell, P. H. Skarzynski, K. Kochanek, and H. Skarzynski,“Time-frequency analysis of linear and nonlinear otoacoustic emissions and removal of a shortlatency stimulus artifact,” J. Acoust. Soc. Amer., vol. 131, no. 3, pp. 2200–2208, 2012.
[28] P. Ravazzani, G. Tognola, F. Grandori, and J. Ruohonen, “Two-dimensional filter to facilitate detection of transient-evoked otoacoustic emissions,” IEEE Trans. Biomed. Eng., vol. 45, no. 9, pp. 1089–1096, 1998.
[29] A. Moleti, F. Longo, and R. Sisto, “Time-frequency domain filtering of evoked otoacoustic emissions,” J. Acoust. Soc. Amer., vol. 132, no. 4, pp. 2455–2467, 2012.
[30] C. A. Shera and C. Bergevin, “Obtaining reliable phase-gradient delays from otoacoustic emission data,” J. Acoust. Soc. Amer., vol. 132, no. 2, pp. 927–943, 2012.
[31] R. Sisto, F. Sanjust, and A. Moleti, “Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions,”J. Acoust. Soc. Amer., vol. 133, no. 4, pp. 2240–2253, 2013.
[32] T. Takeda, A. Kakigi, S. Takebayashi, S. Ohono, R. Nishioka, and H. Nakatani,“Narrow-band evoked oto-acoustic emission from ears with normal and pathologic conditions,” Orl. J. Otorhinolaryngol. Relat. Spec., vol. 71, no. 1, pp. 41–56, 2009.
[33] W. W. Jedrzejczak, K. J. Blinowska, and W. Konopka, “Time-frequency analysis of transiently evoked otoacoustic emissions of subjects exposed to noise,” Hearing Research, vol. 205, no. 12, pp. 249–255, 2005.
[34] A. Paglialonga, S. Barozzi, D. Brambilla, D. Soi, A. Cesarani, C. Gagliardi, E. Comiotto, E. Spreafico, and G. Tognola, “Cochlear active mechanisms in young normal-hearing subjects affected by williams syndrome: Time-frequency analysis of otoacoustic emissions,” Hearing Research, vol. 272, no.12, pp. 157–167, 2011.
[35] P. Ravazzani, G. Tognola, M. Parazzini, and F. Grandori, “Principal component analysis as a method to facilitate fast detection of transient-evoked otoacoustic emissions,” IEEE Trans. Biomed. Eng., vol. 50, no. 2, pp. 249–252, 2003.
[36] P. Ravazzani and F. Grandori, “Evoked otoacoustic emissions: nonlinearities and response interpretation,” IEEE Trans. Biomed. Eng., vol. 40, no. 5, pp. 500–504, 1993.
[37] C. A. Shera, “Intensityinvariance of fine time structure in basilarmembrane click responses Implications for cochlear mechanics,” J. Acoust. Soc. Amer., vol. 110, no. 1, pp. 332–348, 2001.
[38] R. Sisto, C. A. Shera, A. Altoè, and A. Moleti, “Constraints imposed by zerocrossing invariance on cochlear models with two mechanical degrees of freedom,”J. Acoust. Soc. Amer., vol. 146, no. 3, pp. 1685–1695, 2019.
[39] I. M. Johnstone, “High dimensional statistical inference and random matrices,” in Proceedings oh the International Congress of Mathematicians: Madrid, August 2230, 2006: invited lectures, pp. 307–333, 2006.
[40] N. Wiener, Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. MIT press, 1950.
[41] A. Singer and H. T. Wu, “Two-dimensional tomography from noisy projections taken at unknown random directions,” SIAM Journal on Imaging Sciences, vol. 6, no. 1, pp. 136–175, 2013.
[42] M. Gavish and D. L. Donoho, “Optimal shrinkage of singular values,” IEEE Trans. Inf. Theory, vol. 63, no. 4, pp. 2137–2152, 2017.
[43] R. Anvari, M. Mohammadi, and A. R. Kahoo, “Enhancing 3D seismic data using the tSVD and optimal shrinkage of singular value,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 1, pp. 382–388, 2018.
[44] P. C. Su, S. Miller, S. Idriss, P. Barker, and H. T. Wu, “Recovery of the fetal electrocardiogram for morphological analysis from two transabdominal channels via optimal shrinkage,” Physiological measurement, vol. 40, no. 11, p. 115005, 2019.
[45] I. B. Mertes and S. S. Goodman, “Within- and across-subject variability of repeated measurements of medial olivocochlear-induced changes in transient-evoked otoacoustic emissions,” Ear and Hearing, vol. 37, no. 2, pp. e72–e84, 2016.
[46] R. Onorati, P. Sampson, and P. Guttorp, “A spatio-temporal model based on the SVD to analyze daily average temperature across the Sicily region,” Journal of Environmental Statistics, vol. 5, 2013.
[47] D. L. Donoho, M. Gavish, and I. M. Johnstone, “Optimal shrinkage of eigenvalues in the spiked covariance model,” Ann. Stat., vol. 46, no. 4, p. 1742, 2013.
[48] F. Benaych-Georges and R. R. Nadakuditi, “The singular values and vectors of low rank perturbations of large rectangular random matrices,” Journal of Multivariate Analysis, vol. 111, pp. 120–135, 2012.
[49] D. H. Keefe, “Double-evoked otoacoustic emissions. i. measurement theory and nonlinear coherence,” J. Acoust. Soc. Amer., vol. 103, no. 6, pp. 3489–3498, 1998.
[50] D. T. Kemp, P. Bray, L. Alexander, and A. M. Brown, “Acoustic emission cochleography-practical aspects,” Scandinavian Audiology. Supplementum, vol. 25, pp. 71–95, 1986.
[51] R. H. Withnell and S. McKinley, “Delay dependence for the origin of the nonlinear derived transient-evoked otoacoustic emission,” J. Acoust. Soc. Amer., vol. 117, no. 1, pp. 281–291, 2005.
[52] B. A. Prieve and S. R. Falter, “COAEs and SSOAEs in adults with increased age,”Ear and Hearing, vol. 16, no. 5, pp. 521–528, 1995.
[53] W. W. Jedrzejczak, K. J. Blinowska, K. Kochanek, and H. Skarzynski, “Synchronized-spontaneous otoacoustic emissions analyzed in a time-frequency domain,”J. Acoust. Soc. Amer., vol. 124, no. 6, pp. 3720–3729, 2008.
[54] S. T. Neely, “Mathematical modeling of cochlear mechanics,” J. Acoust. Soc. Amer., vol. 78, no. 1, pp. 345–352, 1985.
[55] S. T. Neely, “A model of cochlear mechanics with outer hair cell motility,” J. Acoust. Soc. Amer., vol. 94, no. 1, pp. 137–146, 1993.
[56] D. C. Mountain and A. E. Hubbard, “A piezoelectric model of outer hair cell function,”J. Acoust. Soc. Amer., vol. 95, no. 1, pp. 350–354, 1994.
[57] Y. W. Liu and S. T. Neely, “Outer hair cell electromechanical properties in a nonlinear piezoelectric model,” J. Acoust. Soc. Amer., vol. 126, no. 2, pp. 751–761, 2009.
[58] Y. W. Liu, L. M. Yu, and P. J. Wu, “Close-loop simulation of the medial olivocochlear anti-masking effects,” in Mechanics of Hearing: Protein to Perception (K. D. Karavitaki and D. P. Corey, eds.), p. 090028, American Institute of Physics, 2015.
[59] I. Daubechies, Y. Wang, and H. T. Wu, “Conceft: Concentration of frequency and time via a multitapered synchrosqueezed transform,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, p. 20150193, 2016.
[60] A. Janušauskas, V. Marozas, B. Engdahl, H. J. Hoffman, O. Svensson, and L. Sörnmo, “Otoacoustic emissions and improved pass/fail separation using wavelet analysis and time windowing,” Medical and Biological Engineering and Computing, vol. 39, no. 1, pp. 134–139, 2001.
[61] R. R. Nadakuditi, “Optshrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 3002–3018, 2014.
[62] W. Leeb and E. Romanov, “Optimal spectral shrinkage and PCA with heteroscedastic noise,”arXiv preprint arXiv:1811.02201, 2018.
[63] W. Leeb, “Matrix denoising for weighted loss functions and heterogeneous signals,”arXiv preprint arXiv:1902.09474, 2019.
[64] S. Kritchman and B. Nadler, “Determining the number of components in a factor model from limited noisy data,” Chemometrics and Intelligent Laboratory Systems, vol. 94, no. 1, pp. 19–32, 2008.
[65] S. Kritchman and B. Nadler, “Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory,” IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3930–3941, 2009.
[66] E. Dobriban and A. B. Owen, “Deterministic parallel analysis: an improved method for selecting factors and principal components,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 81, no. 1, pp. 163–183, 2019.
[67] J. D. Lewis, A. Mashburn, and D. Lee, “Jittering stimulus onset attenuates shortlatency, synchronized-spontaneous otoacoustic emission energy,” J. Acoust. Soc. Amer., vol. 147, no. 3, pp. 1504–1515, 2020.
[68] C. L. Bennett and Ö. Özdamar, “Swept-tone transient-evoked otoacoustic emissions,”J. Acoust. Soc. Amer., vol. 128, no. 4, pp. 1833–1844, 2010.
[69] N. Aubry, R. Guyonnet, and R. Lima, “Spatiotemporal analysis of complex signals theory and applications,” Journal of Statistical Physics, vol. 64, no. 34, pp. 683–739, 1991.
[70] B. Trzaskowski, E. Pilka, W. W. Jedrzejczak, and H. Skarzynski, “Criteria for detection of transiently evoked otoacoustic emissions in schoolchildren,” International journal of pediatric otorhinolaryngology, vol. 79, no. 9, pp. 1455–1461, 2015.