簡易檢索 / 詳目顯示

研究生: 李文皓
Wen-Hao Lee
論文名稱: 基於學習影像品質衡量之動態模糊影像還原
Iterative Blind Image Motion Deblurring Based on Learning Image Quality Assessment
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 53
中文關鍵詞: 盲目影像還原解模糊機器學習無參考影像之影像品質衡量
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出了一個以機器學習為基礎的影像還原演算法,還原線性運動模糊之數位影像。首先,我們透過強健整體運動估測的結果來初始估計動態模糊參數,並且提出一個新的系統架構,藉由遞迴地調整還原所使用的動態模糊參數來得到更好的影像還原結果。此外,我們也對遞迴調整過後的動態模糊參數在時間軸上進行濾波,以整合真實影片在時間軸上所提供的資訊。最後,我們應用一些後處理的技巧,包含 histogram equalization 以及 bilateral filtering 來改善影像還原的結果。值得注意的是,我們藉著 Support Vector Regression (SVR)的技術,由包含不同模糊程度的訓練影像中,學習出一個無參考影像之影像品質衡量模組。透過實驗結果的呈現,包含對影像品質衡量的測試,以及對模擬影像及真實模糊影片所做的影像還原結果,我們映證了本篇論文所提之動態模糊影像還原演算法的功效。


    In this thesis, we propose a learning-based image restoration algorithm for restoring images degraded by linear motion blurs. The motion blur parameters are first approximately estimated from the robust global motion estimation result. Then, we present a novel framework to refine the image restoration iteratively based on recursively adjusting the motion blur parameters for image restoration to achieve the best image quality measure. The temporal information from the frame sequence is also integrated by temporally filtering the refined motion blur parameters for the whole sequence. Finally, we apply some post-processing skills, including the histogram equalization and the bilateral filtering, to improve the image deblurring results. Note that a no-reference image quality assessment model is learned by training Support Vector Regression (SVR) from a collection of representative training images simulated by degradation and restoration with different combinations of motion blur parameter values. Some experimental results on the deblurring of simulated blurred images and real videos are given to demonstrate the performance of the proposed blind motion deblurring algorithm.

    Chapter 1 Introduction 1 1.1 Problem Background 1 1.2 Problem Description 2 1.3 Previous Works 2 1.3.1 Previous Works for Motion Deblurring 3 1.3.2 Previous Works for Image Quality Assessment 6 1.4 Main Contributions 10 1.5 Thesis Organization 10 Chapter 2 Proposed Image Quality Based Motion Deblurring Algorithm 11 2.1 System Overview 11 2.2 Initial Motion Blur Estimation 13 2.3 Image Restoration 16 2.4 No-Reference Image Quality Assessment 17 2.4.1 Collection of Well-Focused Representative Images 18 2.4.2 Blurred Image Simulation 18 2.4.3 Training Example Generation 18 2.4.4 Image Feature Extraction 19 2.4.5 Reference-Based Image Quality Scoring 34 2.4.6 Support Vector Regression Training 35 2.5 Iterative Parameter Adjustment 36 2.6 Temporal Filtering 38 2.7 Image Restoration & Postprocessing 39 Chapter 3 Experimental Results 40 3.1 Testing of the Proposed Image quality Metric 41 3.2 Experiments on Simulated Blurred Images 42 3.3 Experiments on Real Blurred Images 46 Chapter 4 Conclusion 50 References 51

    [1] M. R. Banham and A. K. Katsaggelos, ”Digital image restoration,” IEEE Signal Processing Magazine, Vol. 14, No. 2, pp. 24-41, 1997.
    [2] A. K. Katsaggelos, Digital Image Restoration, Springer-Verlag, New York, 1991.
    [3] D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Processing Magazine, Vol. 13, No.3, pp. 43-64, 1996.
    [4] Y.-L. You and M.~Kaveh, “A regularization approach to joint blur identification and image restoration,” IEEE Trans. Image Processing, Vol. 5, No. 3, pp. 416-428, 1996.
    [5] T.F. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Processing, Vol. 7, No. 3, pp. 370-375, 1998.
    [6] S. Lai and Y. Cui, “Total variational blind image restoration from image sequences,” Proc. SPIE Conf. Visual Communications and Image Processing, Kiyoharu Aizawa, Robert L. Stevenson, Ya-Qin Zhang, Eds., 3653, pp. 96–105, 1999
    [7] F. ˘Sroubek and J. Flusser, “Multichannel blind iterative image restoration,” IEEE Transactions on Image Processing 12:9, pp. 1094–1106, 2003.
    [8] T. Chan, A. Yip, and F. Park, “Simultaneous image inpainting and blind deconvolution,” International Journal of Imaging Systems and Technology, 15:1, pp. 92-102, 2005.
    [9] R.Fergus, B.Singh, A. Hertzmann, S. T. Roweis, W. T. Freeman, ”Removing camera shake from a single photograph,” Proceedings of ACM SIGGRAPH, Volume 25, Issue 3, pp. 787-794, 2006
    [10] M. Ben-Ezra and S. Nayar, “Motion-Based Motion Deblurring,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 689-698, June 2004.
    [11] X. Liu and A. Gamal, “Simultaneous image formation and motion blur restoration via multiple capture,” In Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol. 3, pp. 1841-1844, 2001.
    [12] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transaction on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
    [13] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms,” IEEE Transactions on Image Processing, Vol: 15 No: 11, pp. 3440-3451, 2006.
    [14] P. Marziliano, F. Dufaux, S. Winkler and T. Ebrahimi, “A no-reference perceptual blur metric,” International Conference on Image Processing, vol. 3, pp. 57-60, Sep. 2002.
    [15] E.P. Ong, W.S. Lin, Z.K. Lu, S.S. Yao, X.K Yang and L.F. Jiang, “No-reference JPEG-2000 image quality metric,” International Conference on Multimedia and Expo, vol. 1, pp. 6-9, July. 2003.
    [16] R. Ferzli and L. J. Karam, “A Human Visual System-Based No-Reference Objective Image Sharpness Metric,” IEEE International Conference on Image Processing, Oct. 2006.
    [17] H.R. Sheikh, Z. Wang, L. Cormack and A. C. Bovik, “Blind quality assessment for JPEG2000 compressed images,” International Conference on Image Processing, vol.2, pp. 3-6, Sep. 2002.
    [18] Z. Wang, H.R. Sheikh, and A.C. Bovik, “No-reference perceptual quality asessment of JPEG compressed images,” International Conference on Image Processing, vol. 2, pp. 3-6, Sep. 2002.
    [19] H. R. Sheikh, A. C. Bovik, and L. K. Cormack, “No-Reference Quality Assessment Using Natural Scene Statistics: JPEG2000,” IEEE Transactions on Image Processing, vol. 14, no. 12, December 2005.
    [20] Hanghang Tong, Mingjing Li, Hong-Jiang Zhang, Changshui Zhang, Jingrui He, Wei-Ying Ma, “Learning No-Reference Quality Metric by Examples,” Proceedings of the 11th International Multimedia Modelling Conference, pp. 247-254, Jan 2005
    [21] Yao Wang, Jorn Ostermann, and Ya-Qin Zhang, Video Processing and Communications, Prentice Hall, 2002
    [22] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”, Comm. of the ACM, vol. 24, pp 381-395, 1981.
    [23] FIELD, D. What is the goal of sensory coding? Neural Computation 6, pp. 559-601, 1994.
    [24] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.
    [25] V. Vapnik, S.E. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processings Systems 9, pages 281–287, Cambridge, MA, The MIT Press, 1997.
    [26] Bernhard S, Alexander J S. Learning with Kernels-Support Vector Machines, Regularization, Optimization and Beyond, Massachusetts, London, England: The MIT Press, Cambridge, 2003 Bernhard Schlkopf and Alexander J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press, December 2001
    [27] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proc. IEEE International Conf. on Computer Vision, pp. 836-846, 1998.
    [28] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images,” Proc. ACM SIGGRAPH, pp. 257-266, 2002.
    [29] Olmos, A. and Kingdom, F. A. A. McGill Calibrated Colour Image Database, 2004, http://tabby.vision.mcgill.ca.
    [30] H.R. Sheikh, Z.Wang, L. Cormack and A.C. Bovik, “LIVE Image Quality Assessment Database Release 2,” http://live.ece.utexas.edu/research/quality.
    [31] The MIT-CSAIL database of Objects and Scenes http://web.mit.edu/torralba/www/database.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE