簡易檢索 / 詳目顯示

研究生: 鍾家峻
Chung, Chia-Chun
論文名稱: 利用摻鐿光纖雷射放大器產生皮秒級266奈米輸出之研究
Generation of 266 nm Output from a Picosecond Yb-Doped Fiber Amplifier
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 趙如蘋
Pan, Ru-Pin
黃衍介
Huang, Yen-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 142
中文關鍵詞: 266奈米輸出摻鐿光纖放大器
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們分別利用三硼酸鋰和β相偏硼酸鋇晶體來產生摻鐿光纖主振盪功率放大器 (MOPA) 波長為 532 奈米之二階諧波,以及波長為 266 奈米之四階諧波。為了提高各諧波的轉換效率,我們使用聲光調制器來提高脈衝的尖峰功率,藉由控制聲光調制器的占空比來改變輸入光纖放大器的脈衝數。二階諧波和四階諧波的轉換效率主要被光纖放大器中的非線性效應所限制,其中主要是「自相位調制」及「受激拉曼散射」為造成 MOPA 輸出頻寬大於非線性晶體之相匹配頻寬。藉由改變不同的初始偏振條件和縮短摻鐿光纖的長度,我們成功地將基頻頻寬由6奈米縮小至1奈米。最後,我們分別在一級和二級光纖放大器中使用3公尺和3.5公尺的摻鐿光纖,聲光調制器的占空因數為0.35,輸出平均功率為28瓦的近紅外光的情況下,可以產生超過2.5瓦的綠光 (532奈米),以及超過200毫瓦的紫外 (266奈米) 皮秒級雷射脈衝。


    In this thesis, Lithium Triborate (LBO) and Beta-Barium Borate (β-BBO) crystals were used for generation of second and fourth harmonics of the output of high-power ytterbium-doped dual stage Master-laser-fiber-amplifier (MOFA) at the fundamental wavelength of 1064 nm. The pulse duration of the amplifier output is around 10 ps. An acousto-optic modulator (AOM) was used to modulate the duration of pulse bursts before the fiber amplifier. We found that stimulated Raman scattering (SRS) and self-phase modulation (SPM) are the most important nonlinearities limiting the performance of whole laser system. In order to reduce the nonlinearities in the fiber amplifier and achieve the highest average power at 266nm, several schemes were implemented:
    - the lengths of the active fibers in the fiber amplifier stages were optimized;
    - the polarized launch conditions of the fiber amplifier were controlled such that its spectral width was minimized;
    - the repetition rate and duty circle of pulse bursts were adjusted to maximize the doubling and quadrupling efficiencies;
    We demonstrated that the spectral bandwidth of the amplifier output can be narrowed from 6 nm to 1 nm when the shorter active fibers are employed and the polarization launch conditions are varied from linear to circular states. Also, a pulse-burst repetition rate of 52.5 MHz, and burst duty circle of 0.35 are determined to be optimal for extraction of the maximum peak power while keeping amplified spontaneous emission below the acceptable level. This allows us to generate the maximum average power of the UV pulses at 266 nm over 200 mW when the power of the fundamental IR pulse was 28 W.

    中文摘要 I Abstract II 致謝 III Table of contents IV List of Figures VI List of Tables IX Chapter1 Introduction 1 1.1 Background and motivation 1 1.2 Previous work and objective 5 1.3 Thesis overview 6 Chapter2 Theory 7 2.1 Master Oscillator Power Amplifier 7 2.1.1 Ultrafast Mode-Locked Laser 9 2.1.2 Optical Fiber Amplifier 13 2.1.3 Amplified Spontaneous Emission (ASE) 15 2.1.4 Stimulated Raman Scattering (SRS) 16 2.1.5 Self-Phase Modulation (SPM) 18 2.2 Nonlinear Optics 20 2.2.1 Nonlinear Susceptibility 20 2.2.2 Second Harmonic Generation 24 2.2.3 Fourth Harmonic Generation (FHG) 29 2.2.4 Nonlinear Crystal 30 2.2.5 Phase Matching in Nonlinear Crystal 32 2.2.6 Acceptance of Phase Matching 39 2.2.7 Effective Nonlinear Coefficient 46 Chapter3 Experimental Method 58 3.1 Scheme of Dual-Stage MOPA System 58 3.1.1 Diode-Pumped Solid-State Laser 60 3.1.2 The First Stage Fiber Amplifier 62 3.1.3 The Second Stage Fiber Amplifier 65 3.2 Acousto-Optic Modulator (AOM) 68 3.3 The Stages of Frequency Conversion 78 3.3.1 The Stage of Frequency Doubling 78 3.3.2 The Stage of Frequency Quadrupling 82 3.3.3 Nonlinear Crystal in This Work 86 Chapter4 Result and Discussion 89 4.1 Frequency Doubling of Type-I LBO Crystal with CPM and NCPM 89 4.2 Using of Fiber Type Collimator and Preliminary Result of Quadrupling 93 4.3 Acousto-Optic Modulation (AOM) 100 4.4 SRS and SPM in the Fiber Amplifier 112 4.4.1 Modification of the Yb-Fiber Length 112 4.4.2 The Launch Condition of the Amplifier 125 4.5 FHG of the Dual Stage Fiber Amplifier 130 Chapter5 Conclusion 134 Reference 137

    [1] E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser” Optics letters, vol. 34, No. 11, June 1, 2009.
    [2] D. Karnakis, E.K. Illy, M.R.H. Knowles, E. Gu, M.D. Dawson, ”High throughput scribing for the manufacture of LED components” Proc. SPIE, vol. 5366, January 26, 2004.
    [3] Geoff Shannon, “Microwelding demands new laser tools.” Laser Focus World, vol. 47, Issue 10, Oct. 1, 2011.
    [4] M. Lenzner, J. Krüger, W.Kautek, F. Krausz, Wien, Austria, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A, vol. 68, no. 3, pp. 369–371, Jan. 5, 1999.
    [5] P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun., vol. 114, issue 1-2, pp. 106-110, Jan. 15, 1995.
    [6] J. Theime, “Fiber laser new challenges for the materials processing,” Laser Technik Journal, no. 3, pp. 58-60, Jun. 2007.
    [7] F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tunnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Optics Letters, vol. 36, no. 5, pp. 689-691, Mar. 1, 2011.
    [8] C. Stolzenburg, A. Voss, T. Graf, M. Larionov, and A. Giesen, "Advanced pulsed thin disk laser sources." Proc. SPIE, vol. 6871, pp. 68710H-68710H-14, 2008.
    [9] J. Rothhardt, T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, T. Gottschall, T. V. Andersen, J. Limpert, and A. Tünnermann, “135 W average-power femtosecond pulses at 520 nm from a frequency-doubled fiber laser system,” Opt. Lett., vol. 36, no. 3, pp. 316–318, Feb. 1, 2011.
    [10] http://www.rp-photonics.com/index.html.
    [11] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego: Academic, 2007.
    [12] J. Limpert, A. Liem, T. Gabler, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, and H.-R. Müller, “High-average-power picosecond Yb-doped fiber amplifier,” Opt. Lett., vol. 26, no. 23, pp. 1849-1851, Dec. 1, 2001.
    [13] Herbert G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett., vol. 11, no. 1, pp. 33-35, Jan. 1986.
    [14] F. Matera and S. Wabnitz, “Nonlinear polarization evolution and instability in a twisted birefringent fiber,” Opt. Lett., vol. 11, no. 7, pp. 467-469, Jul. 1986.
    [15] J. Noda, K. Okamoto, and Y. Sasaki , “Polarization-maintaining fibers and their applications,” J. Lightwave Technol, vol. 4, no. 8, pp. 1071-1089, Agu. 1986.
    [16] K. Lu and N. K. Dutta ,“Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys., vol. 91, issue 2, pp. 576, 2002.
    [17] K. K. Chen, S. U. Alam, J. R. Hayes, H. J. Baker, D. Hall, R. McBride, J. H. V. Price, D. J. Lin, A. Malinowski, and D. J. Richardson, “56-W Frequency-doubled source at 530 nm pumped by a single-mode, single-polarization, picosecond, Yb3+-doped fiber MOPA,” IEEE Photonics Technol. Lett., vol. 22, no. 12, pp. 893-895, Jun. 15, 2010.
    [18] Zhi Zhao, Bruce M. Dunham, Ivan Bazarov, and Frank W. Wise, “Generation of 110 W infrared and 65 W green power from a 1.3-GHz sub-picosecond fiber amplifier,” Opt. Express, vol. 20, no. 5, pp. 4850-4855, Feb. 5, 2012.
    [19] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. John Wiley & Sons, 1991.
    [20] L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He–Ne laser modes induced by synchronous intracavity modulation”, Appl. Phys. Lett., vol. 5, no. 4, pp. 4-5, Jul. 1964.
    [21] H.A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1173-1185, Nov. 2000.
    [22] R¨udiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers”, IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049-1056, Jul. 1997.
    [23] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N.Payne, “Low-noise Erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026-1028, Sep. 10, 1987.
    [24] M. L. Dakss and W. J. Miniscalco, “Fundamental limits on Nd3+-doped fiber amplifier performance at 1.3 μm”, IEEE Photon. Technol. Lett., vol. 2, no. 9, pp. 650-652, Sep. 1990.
    [25] Y. Ohishi, T. Kanamori, T. Nishi, and S. Takahashi, “A high gain, high output saturation power Pr3+-doped fluoride fiber amplifier operating at 1.3 μm”, IEEE Photon. Technol. Lett., vol. 3, no. 8, pp. 715-717, Aug. 1991.
    [26] N. P. Barnes, B. M. Walsh, “Amplified spontaneous emission – application to Nd: YAG lasers,” IEEE J. Quantum Electron., vol. 35, issue 1, pp. 101-109, 1999.
    [27] C. V. Raman and K. S. Krishnan, “A New Type of Secondary Radiation,” Nature, vol. 121, no. 3048, pp. 501-502, 1928.
    [28] R. H. Stolen, E. P. Ippen, and A. R. Tynes, ”Raman oscillation in glass optical waveguide,” Appl. Phys. Lett., vol. 20, issue 2, pp.62, 1972.
    [29] S.A. Planas, N. L. Pires Mansur, C. H.Brito Cruz, and H. L.Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett., vol. 18, issue 9, pp. 699–701, 1993.
    [30] D. N. Schimpf, T. Eidam, E. Seise, S. Hadrich, J. Limpert, and A. Tunnermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity” Opt. Express, Vol. 17, No. 21, 12 October 2009.
    [31] P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich “Generation of optical harmonics,” Phys. Rev. Letters, vol. 7, no. 4, pp. 118-119, Aug. 15, 1961.
    [32] R.W. Terhune, P.D. Maker, C.M. Savage ” Optical harmonic generation in calcite,” Phys. Rev. Lett., vol. 8, no. 10, pp. 404-406, Apr. 16, 1962.
    [33] D. A. Kleinman, “Theory of Second Harmonic Generation of Light,” Phys. Rev., vol. 128, no. 4, pp. 1761-1775, Nov. 1962.
    [34] Ito H, Inaba H, “Optical properties and UV N2 laser-pumped parametric fluorescence in LiCOOH-H2O,” IEEE J. Quantum Electron., vol. 8, no. 6, pp. 612, Jun. 1972.
    [35] J. F. Nye, Physical properties of crystals, Clarendon: Oxford, 1957.
    [36] V.G. Dmitriev, D.N.Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystal of mm2 point group symmetry,” Opt. Commun., vol. 95, no. 1-3, pp. 173-182, Jan. 1993.
    [37] A. Zaytsev, Chi-Luen Wang, Chih-Hsuan Lin, Ci-Ling Pan, “Robust diode-end-pumped Nd:GdVO4 laser passively mode-locked with saturable output coupler”, Laser Physics, vol. 21, no. 12, pp. 2029–2035, Nov. 12, 2011.
    [38] Feng-Hua Tsai, “Second Harmonic Generation of the High-Power Picosecond Ytterbium-Doped Fiber Amplifier” Master dissertation, National Tsing Hua University, Taiwan (2012)
    [39] C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B, vol. 6, no. 4, pp. 616-621, Apr. 1989.
    [40] S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. vol. 67, no. 2, pp. 634-638, Jan. 15, 1990.
    [41] C. T. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal - beta-BaB2O4,” Sci. Sin. B, vol. 28, pp. 235-243, 1985.
    [42] J. D. Bierlein, “Potassium titanyl phosphate (KTP): Properties, recent advances and new applications,” Proc. SPIE, vol. 1104, pp. 2-12, Sep. 25, 1989.
    [43] Fali Xie, Baichang Wu, Guiming You, and Chuangtian Chen, “Characterization of LiB3O5 crystal for second-harmonic generation,” Opt. Lett., vol. 16, no. 16, pp. 1237-1239, Aug. 15, 1991.
    [44] Yi-Jing You, “A high-power picosecond laser system using a dual-stage ytterbium-doped fiber amplifier” Master dissertation, National Tsing Hua University, Taiwan (2012)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE