研究生: |
江政隆 Chang-Long Chiang |
---|---|
論文名稱: |
牙齒修補體雷射掃描數據之三角網格建模 Triangular Mesh Reconstruction for Laser Scanning Data of Teeth Repair |
指導教授: |
雷衛台
Wei-Tai Lei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 三角網格 、建模 、雷射掃瞄 、方向選點 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三角網格面是外貌重建技術中,最常使用的方法之一。本論文針對雷射掃描機掃描牙齒修復體得出之點群數據,考慮補牙鑲合應用上的需要,研究簡單快速的演算法,將點群數據拉建出修補體的三維三角網格面模型。
由於獲得的點資料數據,本身帶有雜訊的干擾,若是將這些資料未經處理地直接拉建三角網格面,所重建出來的外貌,會呈現凹凸崎嶇不平的表面。所以要對這些點資料,進行濾波,以獲得較平整的表面結果。因為,重建的三角網格實體,是日後要嵌入病入蛀牙牙穴內的修補體,為確保重建的修補體不會過大以致無法嵌入蛀牙牙穴內,本研究採用開口選點的方法,並希望引入每個點的曲率大小協助點的捨取,藉此想法來取出掃描資料的最佳下包絡曲線。如此得出的結果,可避免修復體過度突入牙穴而無法鑲入。
在完成資料數據的過濾後,即進行三角網格的拉建。因取得的是具結構性的點群,在拉得三角網格面時,僅需做區域性搜尋最近點。如此,可以較快速、便捷的演算法重建三角網格面。
參考文獻
[1]Y. Sato and M. Otsuki, “Three-Dimensional Shape Reconstruction by Active Rangefinder”, in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Jun. 1993, pp. 142-147.
[2]Y. Ebara, H. Sone, Y. Nemoto, and T. Takagi, “A High-Resolution Measurement System for Surface Profile of Electric Contact”, IEICE Trans. on Electronics, vol. E81-C, pp. 432-434, March 1998.
[3]H. D. Graham and D. D. Snyder, “The Generation of Unstructured Triangular Meshes Using Delaunay Triangulation”, in Proc. Numerical Grid Generation in Computational Fluid Mechanics, Miami, 1998, pp.643-652.
[4]Y. Zheng, R. W. Lewis, and D. I. Gethin, “Three-dimensional unstructured mesh generation: Part1. Fundamental aspects of triangulation and point creation”, Computer Methods in Applied Mechanics and Engineering, vol. 134, pp.249-268, 1996.
[5] A Survey of Unstructured Mesh Generation Technology, S. Owen. (Jun. 14, 2004). http://www.andrew.cmu.edu/user/sowen/survey/.
[6]J.L. Peng, C.S. Kim, and C.-C J. Kuo, ”Technologies for 3D Triangular Mesh Compression: A Survey”, Journal of Visual Communication and Image Representation, 2003.
[7]T. Jurczyk and B. Glut, “Triangular and Quadrilateral Meshes on 3D Surfaces”, in Proc. the fifth World Congress on Computational Mechanics, Vienna, Austria, Jul. 2002.
[8] H. Chen and J. Bishop, ”Delaunay Triangulation for Curved Surfaces”, in Proc. 6th International Meshing Roundtable, Sandia National Laboratories, Oct. 1997, pp. 115-127.
[9]R. E. Fayek, ”Feature-Based 3D Surface modeling by improved constrained triangular meshes”, in Proc. IEEE International Conf. on Image Processing, Santa Barbara, Calif,Oct. 1997, pp. 740-743.