簡易檢索 / 詳目顯示

研究生: 徐子偉
Hsu, Tzu-Wei
論文名稱: 以微拉曼探討表面奈米結構熱應力下降現象
Micro-Raman Investigation of Thermal-Stress Reduction by Surface Nanostructures
指導教授: 葉哲良
Yeh, J. Andrew
口試委員: 林育芸
葉孟考
徐文慶
侯帝光
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 114
中文關鍵詞: 金屬催化濕式蝕刻法拉曼光譜儀熱應力下降
外文關鍵詞: Metal-Catalyzed Wet-Etching, Raman Spectroscopy, Thermal Stress Reduction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成功利用濕式蝕刻法搭配奈米銀粒子催化反應(Silver-Nanoparticles-Catalyzed Chemical Reaction Wet-Etching),於一般商品化之4吋單面拋光(100)面之矽晶圓,製作具有規律性且相同深度為1、2、3微米(μm)深度之表面大尺度圖案化奈米垂直線狀結構(Surface Large-Scale Patterned Nanowires),並成功運用其結構,強化20微米(μm)寬度、300奈米(nm)厚度、配合濺鍍機(Sputter)製作之撥離製程(Lift-Off Process)表面鋁金屬熱電阻線環繞於奈米垂直線狀結構內,且藉由微拉曼光譜儀(Micro-Raman Spectroscopy),直接證明其微米鋁熱電阻線於通入高電流之高功率情況下,其熱應力之分佈可被週遭環繞表面奈米線狀結構造成熱應力下降之現象,藉此可望提高熱電阻線之可靠度。

    關鍵字:金屬催化濕式蝕刻法、拉曼光譜儀、熱應力下降


    In this study we successfully to demonstrate the silver-nanoparticles-catalyzed chemical reaction wet-etching for commercialize, single-side polished, orientation with (100) face, and 4-inch with diameter silicon wafers with regular and around 1、2、3-μm uniform depth surface large-scale patterned nanowires surrounding the Al-metal heating resistor with 20 μm width and 300 nm thickness by the sputter and lift-off process. After that by the investigation of micro-Raman spectroscopy we directly proved the reduction of thermal stress near the sidewall area between substrate silicon and heating resistor which operating with high power density. By the result of this study we may prove the high density surface nanostructure can enhance the reliability of electronic devices.

    Keywords:Metal-Catalyzed Wet-Etching、Raman Spectroscopy、Thermal Stress Reduction

    中文摘要 1 Abstract 2 銘謝 3 Contents 4 Table Caption 6 Figure Caption 7 Chapter 1 Introduction 12 1.1. Motivations 12 1.2. Research Background 14 1.2.1. Silicon Materials Mechanical Properties and Breaking Strength 14 1.2.2. Silicon Wafer Strengthening by Large-Scale Surface Nanowires 15 1.2.3. Analysis of thermal Stress 26 1.3.Research Objective / Targets 28 Chapter 2 Principle 29 2.1. Thermal Stress 29 2.1.1.Formation, Characteristic, Classification of Thermal Stress 29 2.1.2.Scale of Thermal Stress 35 2.2. Surface Nanostructure Forming by Metal-Catalyzed Wet-Etching 37 2.2.1.Mechanism of Metal-Catalyzed Wet-Etching 38 2.2.2.Pattern Large-Scale Surface Nanowires 41 2.3. Raman Spectroscopy 43 2.3.1.Principle of Raman Spectroscopy 44 2.3.2.Raman Spectroscopy for Stress Measurement 48 2.3.3. The Independence of Raman Spectroscopy between Temperature and Stress 50 Chapter 3 Fabrication and Measurement 56 3.1. The Metal of Heating Resistor on Silicon Wafer for Thermal Stress Measurement 57 3.2. Lift-Off Process for Heating Metal Resistor 61 3.3. Wire Bonding and Packaging 65 3.4. Scanning Electrical Microscopy, SEM 65 3.5. Micro-Raman Spectroscopy 69 Chapter 4 Result And Discussion 71 4.1. SEM Result of Fabrication Process: Compatibility of Metal-Catalyzed Surface Nanowires 71 4.2. Result of Micro-Raman Spectroscopy 77 4.2.1. Micro-Raman Spectroscopy Result of Reference Silicon 77 4.2.2. Micro-Raman Spectroscopy Result of Surface Nanowires Silicon Sample 79 4.2.3. Micro-Raman Spectroscopy Result of Measuring Samples 92 Chapter 5 Conclusion 98 Chapter 6 Future Work 99 Reference 100 Appendix A. Derivation of the stress by Raman spectra peak shifting 113 Appendix B. The derivation of coefficient of thermal expansion from Raman spectra shifting 114

    [1] G. E. Moore, "Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965)," Proceedings of the Ieee, 86, 82-85, (1998).
    [2] D. J. Frank, "Power-constrained CMOS scaling limits," Ibm Journal of Research and Development, 46, 235-244, (2002).
    [3] S. M. Hu, "Stress-Related Problems in Silicon Technology," Journal of Applied Physics, 70, R53-R80, (1991).
    [4] S. M. Hu, "Temperature Distribution and Stresses in Circular Wafers in a Row during Radiative Cooling," Journal of Applied Physics, 40, 4413-&, (1969).
    [5] J. F. Jongste, T. G. M. Oosterlaken, G. C. J. Bart, G. C. A. M. Janssen, and S. Radelaar, "Deformation of Si(100) Wafers during Rapid Thermal Annealing," Journal of Applied Physics, 75, 2830-2836, (1994).
    [6] T. S. Oh, H. Jeong, T. H. Seo, Y. S. Lee, A. H. Park, H. Kim, K. J. Lee, and E. K. Suh, "Improved Strain-Free GaN Growth with a Nearly Lattice-Matched AlInN Interlayer by Metalorganic Chemical Vapor Deposition," Japanese Journal of Applied Physics, 49, (2010).
    [7] T. Batten, J. W. Pomeroy, M. J. Uren, T. Martin, and M. Kuball, "Simultaneous measurement of temperature and thermal stress in AlGaN/GaN high electron mobility transistors using Raman scattering spectroscopy," Journal of Applied Physics, 106, (2009).
    [8] K. Sakurai, K. Abe, and T. Mizumoto, "Relaxation of Thermal Stress in Direct Bonding by Partitioning the Bonding Area for Fabrication of Optical Isolator with Semiconductor Guiding Layer," Japanese Journal of Applied Physics, 48, (2009).
    [9] J. A. Appels, E. Kooi, M. M. Paffen, Schatorj.Jj, and Verkuyle.Wh, "Local Oxidation of Silicon and Its Application in Semiconductor-Device Technology," Philips Research Reports, 25, 118-&, (1970).
    [10] I. Dewolf, J. Vanhellemont, A. Romanorodriguez, H. Norstrom, and H. E. Maes, "Micro-Raman Study of Stress-Distribution in Local Isolation Structures and Correlation with Transmission Electron-Microscopy," Journal of Applied Physics, 71, 898-906, (1992).
    [11] S. M. Hu, "Film-Edge-Induced Stress in Silicon Substrates," Applied Physics Letters, 32, 5-7, (1978).
    [12] S. C. Jain, H. E. Maes, K. Pinardi, and I. DeWolf, "Stresses and strains in lattice-mismatched stripes, quantum wires, quantum dots, and substrates in Si technology," Journal of Applied Physics, 79, 8145-8165, (1996).
    [13] V. P. Gopinath, H. Puchner, and M. Mirabedini, "STI stress-induced increase in reverse bias junction capacitance," Ieee Electron Device Letters, 23, 312-314, (2002).
    [14] Y. L. Shen, "Thermo-mechanical stresses in copper interconnects - A modeling analysis," Microelectronic Engineering, 83, 446-459, (2006).
    [15] Y. J. Hou and C. M. Tan, "Stress-induced voiding study in integrated circuit interconnects," Semiconductor Science and Technology, 23, (2008).
    [16] T. F. Retajczyk and A. K. Sinha, "Elastic Stiffness and Thermal-Expansion Coefficient of Bn Films," Applied Physics Letters, 36, 161-163, (1980).
    [17] J. H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W. Y. Shih, "On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique," Journal of Applied Physics, 88, 3029-3038, (2000).
    [18] A. H. Harker, K. Pinardi, S. C. Jain, A. Atkinson, and R. Bullough, "2-Dimensional Finite-Element Calculation of Stress and Strain in a Stripe Epilayer and Substrate," Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 71, 871-881, (1995).
    [19] S. C. Jain, A. H. Harker, A. Atkinson, and K. Pinardi, "Edge-Induced Stress and Strain in Stripe Films and Substrates - a 2-Dimensional Finite-Element Calculation," Journal of Applied Physics, 78, 1630-1637, (1995).
    [20] P. Sharma, H. Ardebili, and J. Loman, "Note on the thermal stresses in passivated metal interconnects," Applied Physics Letters, 79, 1706-1708, (2001).
    [21] Yamagish.S, "Anticlastic Bending of Silicon Wafers Induced during Thermal Cycling," Japanese Journal of Applied Physics, 12, 1748-1752, (1973).
    [22] V. L. Teal and S. P. Murarka, "Stresses in Tasix Films Sputter Deposited on Polycrystalline Silicon," Journal of Applied Physics, 61, 5038-5046, (1987).
    [23] H. Niwa, H. Yagi, H. Tsuchikawa, and M. Kato, "Stress-Distribution in an Aluminum Interconnect of Very Large-Scale Integration," Journal of Applied Physics, 68, 328-333, (1990).
    [24] M. A. Korhonen, W. R. Lafontaine, P. Borgesen, and C. Y. Li, "Stress-Induced Nucleation of Voids in Narrow Aluminum-Based Metallizations on Silicon Substrates," Journal of Applied Physics, 70, 6774-6781, (1991).
    [25] P. Kumar, I. Dutta, and M. S. Bakir, "Interfacial Effects During Thermal Cycling of Cu-Filled Through-Silicon Vias (TSV)," Journal of Electronic Materials, 41, 322-335, (2012).
    [26] E. J. Cheng and Y. L. Shen, "Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging," Microelectronics Reliability, 52, 534-540, (2012).
    [27] C. B. Zhang and L. J. Li, "Characterization and Design of Through-Silicon Via Arrays in Three-Dimensional ICs Based on Thermomechanical Modeling," Ieee Transactions on Electron Devices, 58, 279-287, (2011).
    [28] A. S. Budiman, H. A. S. Shin, B. J. Kim, S. H. Hwang, H. Y. Son, M. S. Suh, Q. H. Chung, K. Y. Byun, N. Tamura, M. Kunz, and Y. C. Joo, "Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits," Microelectronics Reliability, 52, 530-533, (2012).
    [29] C. N. Chen, C. T. Huang, C. L. Chao, M. T. K. Hou, W. C. Hsu, and J. A. Yeh, "Strengthening for sc-Si Solar Cells by Surface Modification With Nanowires," Journal of Microelectromechanical Systems, 20, 549-551, (2011).
    [30] J. A. Yeh, J. Y. Chyan, and W. C. Hsu, "Broadband antireflective poly-Si nanosponge for thin film solar cells," Optics Express, 17, 4646-4651, (2009).
    [31] C. T. Chan and J. A. Yeh, "Powerless tunable photonic crystal with bistable color and millisecond switching," Optics Express, 19, 13707-13713, (2011).
    [32] C. T. Chan and J. A. Yeh, "Tunable photonic crystal based on capillary attraction and repulsion," Optics Express, 18, 20894-20899, (2010).
    [33] D. S. Y. Hsu and H. F. Gray, "Conformal Chemical Beam Deposition of Thin Metal-Film for Fabricating High-Density Trench Capacitor Cells," Applied Physics Letters, 63, 159-161, (1993).
    [34] J. T. Hu, M. Ouyang, P. D. Yang, and C. M. Lieber, "Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires," Nature, 399, 48-51, (1999).
    [35] A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science, 279, 208-211, (1998).
    [36] K. W. Schwarz and J. Tersoff, "Multiplicity of Steady Modes of Nanowire Growth," Nano Letters, 12, 1329-1332, (2012).
    [37] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Advanced Materials, 14, 1164-1167, (2002).
    [38] K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Advanced Materials, 16, 73-+, (2004).
    [39] K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, "Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays," Angewandte Chemie-International Edition, 44, 2737-2742, (2005).
    [40] A. Reader, "Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics," Nanoscale Research Letters, 6, (2011).
    [41] N. Megouda, G. Piret, E. Galopin, Y. Coffinier, T. Hadjersi, O. Elkechai, and R. Boukherroub, "Lithographically patterned silicon nanostructures on silicon substrates," Applied Surface Science, 258, 6007-6012, (2012).
    [42] I. DeWolf, "Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits," Semiconductor Science and Technology, 11, 139-154, (1996).
    [43] D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, "Phonon Dispersion Curves by Raman Scattering in Sic Polytypes 3c,4h,6h,15r,and 21r," Physical Review, 173, 787-&, (1968).
    [44] D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, "Raman Scattering in 6h Sic," Physical Review, 170, 698-&, (1968).
    [45] B. A. Weinstein and G. J. Piermarini, "Raman-Scattering and Phonon Dispersion in Si and Gap at Very High-Pressure," Physical Review B, 12, 1172-1186, (1975).
    [46] S. Kouteva-Arguirova, T. Arguirov, D. Wolfframm, and J. Reif, "Influence of local heating on micro-Raman spectroscopy of silicon," Journal of Applied Physics, 94, 4946-4949, (2003).
    [47] C. Ulrich, A. Debernardi, E. Anastassakis, K. Syassen, and M. Cardona, "Raman linewidths of phonons in Si, Ge, and SiC under pressure," Physica Status Solidi B-Basic Research, 211, 293-300, (1999).
    [48] J. Liu and Y. K. Vohra, "Raman modes of 6H polytype of silicon carbide to ultrahigh pressures - Reply," Physical Review Letters, 77, 1661-1661, (1996).
    [49] J. Liu and Y. K. Vohra, "Raman Modes of 6h Polytype of Silicon-Carbide to Ultrahigh Pressures - a Comparison with Silicon and Diamond," Physical Review Letters, 72, 4105-4108, (1994).
    [50] A. Compaan and H. J. Trodahl, "Resonance Raman-Scattering in Si at Elevated-Temperatures," Physical Review B, 29, 793-801, (1984).
    [51] G. Lucazeau, "Effect of pressure and temperature on Raman spectra of solids: anharmonicity," Journal of Raman Spectroscopy, 34, 478-496, (2003).
    [52] M. Balkanski, R. F. Wallis, and E. Haro, "Anharmonic Effects in Light-Scattering Due to Optical Phonons in Silicon," Physical Review B, 28, 1928-1934, (1983).
    [53] S. A. Hambir, J. Franken, D. E. Hare, E. L. Chronister, B. J. Baer, and D. D. Dlott, "Ultrahigh time-resolution vibrational spectroscopy of shocked molecular solids," Journal of Applied Physics, 81, 2157-2166, (1997).
    [54] H. Harima, S. Nakashima, and T. Uemura, "Raman-Scattering from Anisotropic Lo-Phonon-Plasmon-Coupled Mode in N-Type 4h-Sic and 6h-Sic," Journal of Applied Physics, 78, 1996-2005, (1995).
    [55] M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, "Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress," Journal of Heat Transfer-Transactions of the Asme, 129, 329-334, (2007).
    [56] R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, "Phonon confinement and laser heating effects in Germanium nanowires," Physical Review B, 74, (2006).
    [57] M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, "Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy," Microelectronic Engineering, 85, 1443-1446, (2008).
    [58] A. Nayar, The Metals Databook: McGraw-Hill, 1997.
    [59] P. H. Xiao, Introduction to Semiconductor Manufacturing Technology: Prentice Hall, 2001.
    [60] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis: Brooks/Cole, 2007.
    [61] G. R. Lin, Y. H. Lin, Y. H. Pai, and F. S. Meng, "Si nanorod length dependent surface Raman scattering linewidth broadening and peak shift," Optics Express, 19, 597-605, (2011).
    [62] H. Richter, Z. P. Wang, and L. Ley, "The One Phonon Raman-Spectrum in Microcrystalline Silicon," Solid State Communications, 39, 625-629, (1981).
    [63] I. H. Campbell and P. M. Fauchet, "The Effects of Microcrystal Size and Shape on the One Phonon Raman-Spectra of Crystalline Semiconductors," Solid State Communications, 58, 739-741, (1986).
    [64] S. Ganesan, Maradudi.Aa, and J. Oitmaa, "A Lattice Theory of Morphic Effects in Crystals of Diamond Structure," Annals of Physics, 56, 556-&, (1970).
    [65] V. Paillard, P. Puech, M. A. Laguna, P. Temple-Boyer, B. Caussat, J. P. Couderc, and B. de Mauduit, "Resonant Raman scattering in polycrystalline silicon thin films," Applied Physics Letters, 73, 1718-1720, (1998).
    [66] P. J. Mcnally, J. W. Curley, M. Bolt, A. Reader, T. Tuomi, R. Rantamaki, A. N. Danilewsky, and I. DeWolf, "Monitoring of stress reduction in shallow trench isolation CMOS structures via synchrotron X-ray topography, electrical data and raman spectroscopy," Journal of Materials Science-Materials in Electronics, 10, 351-358, (1999).
    [67] V. Senez, A. Armigliato, I. De Wolf, G. Carnevale, R. Balboni, S. Frabboni, and A. Benedetti, "Strain determination in silicon microstructures by combined convergent beam electron diffraction, process simulation, and micro-Raman spectroscopy," Journal of Applied Physics, 94, 5574-5583, (2003).
    [68] V. I. Srikar, A. K. Swan, M. S. Unlu, B. B. Goldberg, and S. M. Spearing, "Micro-raman measurement of bending stresses in micromachined silicon flexures," Journal of Microelectromechanical Systems, 12, 779-787, (2003).
    [69] H. Wipf, M. V. Klein, B. S. Chandrasekhar, T. H. Geballe, and J. H. Wernick, "Raman-Scattering Measurements of Eg Optical Phonon in V3si," Physical Review Letters, 41, 1752-1754, (1978).
    [70] E. Anastassakis, A. Cantarero, and M. Cardona, "Piezo-Raman Measurements and Anharmonic Parameters in Silicon and Diamond," Physical Review B, 41, 7529-7535, (1990).
    [71] X. M. Wu, J. Y. Yu, T. L. Ren, and L. T. Liu, "Micro-Raman spectroscopy measurement of stress in silicon," Microelectronics Journal, 38, 87-90, (2007).
    [72] J. W. Pomeroy, P. Gkotsis, M. L. Zhu, G. Leighton, P. Kirby, and M. Kuball, "Dynamic Operational Stress Measurement of MEMS Using Time-Resolved Raman Spectroscopy," Journal of Microelectromechanical Systems, 17, 1315-1321, (2008).
    [73] X. J. Pan, C. W. Tan, J. M. Miao, J. Kasim, Z. X. Shen, and E. Q. Xie, "The stress analysis of Si MEMS devices by micro-Raman technique," Thin Solid Films, 517, 4905-4908, (2009).
    [74] A. N. Al-Rawi, A. Kara, P. Staikov, C. Ghosh, and T. S. Rahman, "Validity of the quasiharmonic analysis for surface thermal expansion of Ag(111)," Physical Review Letters, 86, 2074-2077, (2001).
    [75] W. W. Zhang, H. Yu, S. Y. Lei, and Q. A. Huang, "Modeling of silicon thermal expansion using strained phonon spectra," Journal of Micromechanics and Microengineering, 22, (2012).
    [76] H. Zhao, Z. Tang, G. Li, and N. R. Aluru, "Quasiharmonic models for the calculation of thermodynamic properties of crystalline silicon under strain," Journal of Applied Physics, 99, (2006).
    [77] R. Lesar, R. Najafabadi, and D. J. Srolovitz, "Finite-Temperature Defect Properties from Free-Energy Minimization," Physical Review Letters, 63, 624-627, (1989).
    [78] K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, "Linear Thermal-Expansion Measurements on Silicon from 6 to 340 K," Journal of Applied Physics, 48, 865-868, (1977).
    [79] H. J. Mcskimin, "Measurement of Elastic Constants at Low Temperatures by Means of Ultrasonic Waves - Data for Silicon and Germanium Single Crystals, and for Fused Silica," Journal of Applied Physics, 24, 988-997, (1953).
    [80] S. Adachi, P. Capper, S. Kasap, and A. Willoughby, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors: Wiley, 2009.
    [81] H. H. Burke and I. P. Herman, "Temperature-Dependence of Raman-Scattering in Ge1-Xsix Alloys," Physical Review B, 48, 15016-15024, (1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE