研究生: |
彭德銘 Te-Ming Peng |
---|---|
論文名稱: |
可低溫燒結之介電-磁性陶瓷系統 Low-Fire Processing and Properties of Ferrite + Dielectric Ceramic Composite |
指導教授: |
簡朝和
Jau-Ho Jean |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 17 |
中文關鍵詞: | 低溫燒結 、鉍鋅鈮 、鎳銅鋅鐵氧磁體 、介電性質 、磁性 |
外文關鍵詞: | low-fire, BZN, Ni-Cu-Zn ferrite, dielectric properties, magnetic properties |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討三種介電材料與磁性材料Ni-Cu-Zn鐵氧磁體在不同比例下混合共燒之燒結緻密行為、結晶相組成、介電性及磁性。BZN和PNZT系統在900℃持溫2小時的燒結條件下,可分別得到大於95%和90%之相對燒結密度。當BZN與Ni-Cu-Zn鐵氧磁體混合共燒時,BZN中的Bi元素會往Ni-Cu-Zn鐵氧磁體的方向擴散,使得BZN與Ni-Cu-Zn鐵氧磁體間的燒結相容性提高,讓此系統容易燒結緻密。同時在結晶相組成方面,由於Bi往Ni-Cu-Zn鐵氧磁體的方向擴散,因此BZN的結晶相會由Bi2(Zn1/3Nb2/3)2O7轉變為Bi1.5ZnNb1.5O7。在介電性質方面,因為Bi1.5ZnNb1.5O7的出現,使得介電常數因此提高。電感特性方面,BZN在系統中所佔的比例愈高,材料的自我共振頻率愈高,使得此材料系統可以應用在更高頻率的範圍之下。
[1] J. H. Jean and C. R. Chang, “Cofiring Kinetics and Mechanisms of an Ag-Metallized Ceramic-Filled Glass Electronic Package,” J. Am. Ceram. Soc., 80 [12] 3084–92 (1997).
[2] J. H. Jean, C. R. Chang, and Z. C. Chen, “Effect of Densification Mismatch on Camber Development During Cofiring of Nickel-Based Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 80 [9] 2401–6 (1997).
[3] J. C. Chang and J. H. Jean, “Camber Development During the Cofiring of Bi-Layer Glass-Based Dielectric Laminate,” J. Am. Ceram. Soc., 88 [5] 1165–70 (2005).
[4] R. T. Hsu and J. H. Jean, “Key Factors Controlling Camber Behavior During the Cofiring of Bi-Layer Ceramic Dielectric Laminates,” J. Am. Ceram. Soc., 88 [9] 2429–34 (2005).
[5] X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, and S. Buddhudu, “Ferroelectric-Ferromagnetic Composite Material with Significant Permeability and Permittivity,” Adv. Funct. Mater., 14 [9] 920–6 (2004).
[6] Z. Yu and C. Ang, “Electrical and Magnetic Properties of BaTiO3-(Ni0.3Zn0.7)Fe2.1O4 Composites,” J. Mater. Sci.: Mater. Electr., 13, 193-6 (2002).
[7] J. Y. Kim, J. H. Koh, J. S. Song, and A. Grishin, “Magnetically and Electrically Tunable Devices Using Ferromagnetic/Ferroelectric Ceramics,” Phys. Stat. Sol. (b), 241, 1714-7 (2004).
[8] X. W. Qi, J. Zhou, B. R. Li, Y. C. Zhang, Z. X. Yue, Z. L. Gui, and L. T. Li, “Preparation and Spontaneous Polarization-Magnetization of a New Ceramic Ferroelectric-Ferromagnetic Composite,” J. Am. Ceram. Soc., 87 [10] 1848-52 (2004).
[9] M. F. Yan, H. C. Ling, and W. W. Rhodes, “Low-Firing, Temperature-Stable Dielectric Compositions Based on Bismuth Nickel Zinc Niobates,” J. Am. Ceram. Soc., 73 [4], 1106-7 (1990).
[10] S. F. Wang, Y. R. Wang, T. C. K. Yang, P. J. Wang, and C. A. Lu, “Densification and Properties of Fluxed Sintered NiCuZn Ferrites,” J. Magn. Magn. Mater., 217, 35-43 (2000).
[11] J. Jeong, Y. H. Han, and B. C. Moon, “Effects of Bi2O3 Addition on the Microstructure and Electromagnetic Properties of NiCuZn Ferrites,” J. Mater. Sci.: Mater. Electr., 15, 303-6 (2004).
[12] J. H. Jean, C. H. Lee, and W. S. Kou, “Effect of Lead(II) Oxide on Processing and Properties of Low-temperature Cofirable Ni-Cu-Zn Ferrite,” J. Am. Ceram. Soc., 82 [2] 343-50 (1999).
[13] X. L. Wang, H. Wang, and X. Yao, “Structures, Phase Transformations, and Dielectric Properties of Pyrochlores Containing Bismuth,” J. Am. Ceram. Soc., 80 [10] 2745-8 (1997).