簡易檢索 / 詳目顯示

研究生: 林上晏
Lin, Shang-Yen
論文名稱: 室內場景之機器人同步定位、建地圖與導航
SLAM and Navigation in Indoor Environments
指導教授: 陳永昌
Chen, Yung-Chang
口試委員: 賴文能
Lie, Wen-Nung
林惠勇
Lin, Huei-Yung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 61
中文關鍵詞: 同時訂位與建地圖路徑規劃障礙閃避機器人
外文關鍵詞: SLAM, Path planning, obstacle avoidance, robot, EKF, RRT
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年,機器人的相關研究越來越受到關注。許多機器人相關的應用技術也廣為發展。尤其在一些耗費人力或是一些極度危險且不適合以人力在其中工作的環境中,我們都希望能利用機器人來代替人力完成工作。其中機器人的導航已是一個必要且廣泛被討論研究的課題。即時自我定位、建立地圖、路徑規劃以及閃避障礙物的能力是行動自主機器人不可或缺的。
    然而,要達到這些功能並不容易。例如定位與建立地圖為兩個互相影響的問題,機器人若不能夠精準的自我定位,將導致建立的地圖產生誤差,並且以此含有誤差的地圖來定位機器人,將使得誤差不斷累積,不堪使用。路徑規劃以及閃避障礙物也需依賴良好的自我定位來確定機器人、障礙物、地圖之間的相對關係,避障更必須要有即時性以確保機器人能及時避開障礙物。
    在本篇論文中,我們提出一套系統,讓機器人使用搭載於其上的全景攝影機以及雷射測距儀器擷取環境中的點特徵(垂直線段)以及線特徵(水平線段)作為地標,並以EKF(Extended Kalman Filter)修正誤差,來達到即時自我定位與建地圖。在地圖建立完成後,機器人能利用地圖規劃路徑並行走,行走的同時機器人持續利用全景攝影機以及雷射測距儀器不斷的自我定位和偵測障礙物,若發現影響路徑的障礙物,以改良型的RRT(Rapidly Random Tree)快速的建立出閃避路徑,使機器人迅速反應閃避,以達到機器人導航的需求。


    In recent years, there is more and more attention on robotics research. Many related application and technology are also widely developed. In particular, for some labor-intensive or extremely dangerous works, we long for using robots to substitute for human being and accomplish these works. Therefore, robot navigation is necessary and widely discussed. Simultaneous self-positioning, environment map building, path planning and obstacle avoidance are essential abilities for autonomous mobile robots.
    However, it is not easy to achieve these functions. These four problems are not independent but mutually correlated. For example, once self-localization consists in error, it may cause the wrong map building. And the wrong map will cause self-localization in larger error. Furthermore, path planning and obstacle avoidance also need to rely on good self-localization to determine the relative position of robot, obstacles and map.
    In this thesis, we propose a system for wheeled robot SLAM and navigation in indoor environments. An omni-directional camera and a laser range finder are the sensors to extract the point features and the line features as the landmarks. In SLAM and self-localization while navigation, we use extended Kalman filter (EKF) to deal with the uncertainty of robot pose and landmark feature estimation. After the map is built, robot can navigate in the environment based on it. We apply two scale path-planning for navigation. The large-scale planning finds an appropriate path from starting point to destination. The local-scale path-planning fills up the drawbacks of the prior step, such as dealing with the static and dynamic obstacles and smoothing the path for easier robot following. Through the experiment results, we show that the proposed system can smoothly and correctly locate itself, build the environment map and navigate in indoor environments.

    Chapter 1: Introduction 1.1 Overview of Autonomous Mobile Robots 1 1.2 Motivation 1.3 Thesis Organization Chapter 2: Related Works 2.1 Overview of Simultaneous Localization and Mapping (SLAM) 2.1.1 Different Sensors used in SLAM 2.2 Overview of Path Planning and Obstacle Avoidance 2.2.1 Search-Based Path Planning 2.2.2 Sampling-Based Path Planning Chapter 3: System Overview 3.1 System Flowchart 3.2 Sensors in Our System 3.2.1 Onmi-directional Camera 3.2.2 Laser Range Finder 3.3 Landmarks in Indoor Environments Chapter 4: Landmark Extraction and Extended Kalman Filter based SLAM Algorithm 4.1 Landmark Extraction Method 4.1.1 Landmarks Extraction 4.1.2 Point Landmarks 4.1.3 Line Landmarks 4.2 System Models 4.2.1 Motion Model 4.2.2 Landmark Model 4.2.3 Observation Model 4.3 Extended Kalman Filter in SLAM 4.3.1 State Description 4.3.2 Prediction 4.3.3 Data Association 4.3.4 Update 4.3.5 Map Management Chapter 5: Path Planning and Obstacle Avoidance 5.1 Large-Scale Path Planning 5.2 Local-Scale Path Planning 5.2.1 RRT based Re-planning 5.2.2 Orientation Decision Chapter 6: Experimental Results and Discussion 6.1 Experimental Platform 6.2 Experimental Results 6.2.1 Experimental Results of SLAM 6.2.2 Experimental Results of Path Planning and Obstacle Avoidance Chapter 7: Conclusion and Future Works 7.1 Conclusion 7.2 Future Works Reference

    [1] R. Smith, M. Self, and P. Cheeseman. “Estimating uncertain spatial relationships in robotics,” In I.J. Cox and G.T. Wilfong, editors, Autonomous Robot Vehnicles, pp. 167-193, Springer-Verlag, 1990.

    [2] R. C. Smith and P. Cheeseman. “On the representation and estimation of spatial uncertainty,” Technical Report TR 4760 & 7239, SRI, 1985.

    [3] M. Montemerlo, S. Thrun, D. Koller, and B.Wegbreit, “FastSLAM: A factored solution to simultaneous localization and mapping,” in Proc. Nat. Conf. Artif. Intell., Edmonton, AB, Canada, 2002, pp. 593-598.

    [4] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, 2006.

    [5] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping: part II,” Robotics & Automation Magazine, IEEE, vol. 13, no. 3, pp. 108-117, 2006.

    [6] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking geometric beacons,” IEEE Trans. Robotics and Automation, vol. 7, no.3, pp. 376-382, June 1991.

    [7] L. Kleeman, “Advanced Sonar and Odometry Error Modeling for Simultaneous Localisation and Map Building,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 699-704, Dec 2003.

    [8] P. Nunez, R. Vazquez-Martin, J. C. del Toro, A. Bandera, and F. Sandoval, “Feature Extraction from Laser Scan Data based on Curvature Estimation for Mobile Robotics,” IEEE International Conference on Robotics and Automation, pp. 1167-1172, Orlando FL, Jun 2006.

    [9] C. Harris and M. Stephens, “A combined corner and edge detector,” Proc. Alvey Vision Conf, pp. 147-151, 1988.

    [10] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Monocular Vision Based SLAM for Mobile Robots,” IEEE International Conference on Pattern Recognition, vol. 3, pp. 1027-1031, Hong Kong, Sep 2006.

    [11] A. J. Davison and D. W. Murray, “Simultaneous Localisation and Map-Building Using Active Vision,” IEEE Trans on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 865-880, Oct 2002.

    [12] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

    [13] J. Civera, A. J. Davison, and J. Montiel, “Inverse Depth Parametrization for MonocularSLAM,” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 932-945, Oct 2008.

    [14] H. H. Chang, S. Y. Lin and Y. C. Chen, “SLAM for Indoor Environment Using Stereo Vision,” Second WRI Global Congress on Intelligent Systems, 2010

    [15] W. G. Walter, “The Living Brain,” Gerald Duckworth and Co., Ltd, 1953.

    [16] E. W. Dijkstra, “A note on two problems in connection with graphs,” Numerische Mathematik, 1, 269–271, 1959

    [17] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions on, 4(2):100 –107, July 1968.

    [18] Stentz, “Optimal and Efficient Path Planning for Partially-Known Environments,” Proceedings of 1994 IEEE International Conference on Robotics and Automation, Vol.4, pp. 3310-3317, May 1994

    [19] S. Koenig & M. Likhachev, "D* Lite," in Proceedings of the National Conference on Artificial Intelligence AAAI, 2002

    [20] S. Zilberstein and S. Russell, "Approximate reasoning using anytime algorithms," in Imprecise and Approximate Computation, 1995

    [21] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime Dynamic A*: An Anytime, Replanning Algorithm,” in International Conference on Automated Planning & Scheduling, 2005

    [22] M. Overmars, “A random approach to motion planning,” tech. rep., Utrecht Uni-versity, Oct. 1992.

    [23] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,”Tech. Rep. 98-11, Iowa State University, Ames, IA, Oct. 1998

    [24] D. Ferguson and A. Stentz, “Anytime RRTs,” Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2006.

    [25] D. Ferguson and A. Stentz, “Anytime, Dynamic Planning in High-dimensional Search Spaces,” Proceedings of the IEEE International Conference on Robotics and Automation , 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE