簡易檢索 / 詳目顯示

研究生: 桂豫豎
Yu-Shu Kuei
論文名稱: I. 槲皮素調控Skp2蛋白抑制乳癌細胞生長;II. 中草藥成份分析及其對乳癌抗癌活性分析
指導教授: 黃琇珍
Hsiu-Chen Huang
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2012
畢業學年度: 100
語文別: 中文
中文關鍵詞: Skp2蛋白乳癌槲皮素中草藥高效液相層析法抗癌活性
外文關鍵詞: Skp2, breast cancer, Quercetin, Chinese medicinal herbs, HPLC, anti-cancer bioactivity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (Part I) 中文摘要
    癌症腫瘤為一種複雜的疾病。在台灣,乳癌發生率為女性好發癌症的第一位,女性乳癌為臺灣地區女性主要癌症死亡率的第四位,且台灣女性罹患乳癌的發生率和死亡率正逐年攀升。
    在乳癌治療上,通常除了以外科手術為乳癌常見的治療方法之一,另有化學藥物療法(chemotherapy)和放射線療法(radiotherapy)的方式進行治療。有鑑於目前現行對乳癌治療使用臨床化療用藥與荷爾蒙療法,雖然對於荷爾蒙受體陽性(Estrogen Receptor-positive, ER-positive)的乳癌具有高度療效,但對於荷爾蒙受體陰性(ER-negative)及Her-2/neu陰性(Her2-negative)的三陰性乳癌卻無專一性藥物治療。過去文獻指出S-phase kinase-associated protein 2(Skp2蛋白)為致癌蛋白(oncoprotein),具有調控細胞週期或促使細胞最終走向細胞凋亡(Apoptosis)。而黃酮類化合物(flavonoids)因其具有生物效用有抗發炎、抗過敏、抗菌、保護肝臟、抗病毒、抗血栓、保護心臟、降血糖、抗癌和抗腫瘤作用。因此,本研究以天然抗氧化物-槲皮素(Quercetin)對於不同類型的乳癌細胞:BT483(ER-positive)、MDA-MB-231(ER/Her2-negative),探討其是否能藉由調控Skp2蛋白,而進一步對乳癌細胞有抑制生長的作用。
    加入Quercetin作用後,在BT483乳癌細胞中Skp2蛋白表現量相較於control組有明顯減少;而在MDA-MB-231乳癌細胞中,其Skp2蛋白表現量卻無明顯變化。因此,再以臨床用藥Doxorubicin與Quercetin合併使用,探討其是否具有協同抑制乳癌細胞的作用,結果在BT483及MDA-MB-231二株乳癌細胞中,其Skp2、p21、phospho-pRb蛋白表現皆有明顯減少現象,而MDA-MB-231乳癌細胞在Cyclin A、Cyclin D1、CDK1蛋白表現有明顯減少現象。再以RT-PCR確認mRNA的表現,在BT483乳癌細胞中,其Skp2 mRNA表現量增加;而在MDA-MB-231乳癌細胞中,其Skp2 mRNA表現量減少。在Quercetin與Doxorubicin合併使用,在短時間作用下,會調控Skp2蛋白的表現進一步影響乳癌細胞的生長週期;並且在長時間藥物作用下,可能會促使走向細胞凋亡(apoptosis)。未來能藉由不同的類黃酮化合物對於抑制乳癌細胞生長進行探討。

    (Part II) 中文摘要

    在癌症治療上,通常除了以外科手術為乳癌常見的治療方法之一,另有化學藥物療法(chemotherapy)和放射線療法(radiotherapy)的方式進行治療,但利用化學藥物療法和放射線療法除了對付癌組織外,也對正常細胞構成負面影響與危害,並伴隨著嚴重、不適的副作用產生。
    近年來,文獻指出以中草藥作為抗癌治療,其中黃酮類化合物(flavonoid)為可能有效成份,因此,經由HPLC分析多種中草藥萃取物中的黃酮類化合物含量。由MTT assay結果顯示,在57種中草藥中,以甘草、木香、五爪金英、黃蓮、薑黃、黃柏、桂皮、大小薊等8種中草藥萃取物對乳癌細胞有顯著抑制作用,但由HPLC圖譜發現其多酚類化合物含量不高,認為使用乙醇無法完全將多酚類化合物萃取出,而其他中草藥植物研究中卻指出,用乙醇所萃取的萃取物中亦含有具其他生物活性物質,如生物鹼(alkaloid)和具有抗菌能力的物質。因此,選擇以海茄苳利用不同萃取方式進行比較。
    而海茄苳具有抗菌的生物活性,其中可能因其含有黃酮類、酚類、固醇類、生物鹼等化合物,使其可能還具有其他的生物活性。因此,對海茄苳進行乙酸乙酯(Ethyl Acetate, EtOAc)、水 (H2O)、氯仿(Chloroform, CHCl3)及乙醇(Ethanol, EtOH)不同萃取法的成份分析其抗癌活性,發現在用乙酸乙酯(EtOAc)進行的萃取方式,其萃取物是較具有抗癌活性,並使用HPLC進行成份分析,在乙酸乙酯(EtOAc)萃取物其多酚類化合物含量高;進一步用Silica gel column進行海茄苳葉子的乙酸乙酯(EtOAc)萃取物的分餾分離出7種fractions,而其中以fraction-3的抗癌活性最好,並利用HPLC分析其中主要成分,認為可能為Corilagin類似化合物。未來,在中草藥研究上,可以用乙酸乙酯(EtOAc)進行萃取,並進一步探討黃酮類化合物對抗癌活性的研究。


    (Part I) Abstract
    Cancers were known as a kind of malignant neoplasm in medical science, and broad groups of various diseases. In cancers, cells divide and grow uncontrollably, forming malignant tumors, and invade nearby parts of the body. Worldwide, breast cancer is the most common invasive cancer in women. In Taiwan, the incidence of breast cancer is at the first place of all female cancers, and the breast cancer mortality rate is at the forth place of all female mortality rates. The prognosis and clinical management of patients with breast cancer are commonly determined by the expression of receptors to estrogen, progesterone, and Her2/neu. Estrogen receptor positive cancers were treated with long term hormone blocking therapy. The treatments are given with increasing aggressiveness according to the prognosis and risk of recurrence. However, the triple-negative breast cancer do not express the genes for estrogen receptor, progesterone receptor or Her2/neu that differed from the other kinds of breast cancers, and some types of the triple-negative breast cancer were known to be more aggressive with poor prognosis than the hormone receptor positive breast cancers. It made that very complicated to find the specific therapy for the triple-negative breast cancers. The recent researches reported that Skp2 behaves as an oncogene in many cancer, such as breast cancer, prostate cancer, and lung cancers etc. Skp2 is a member of the F-box family and constitutes the substrate recognition subunit of the SCFSkp2 ubiquitin ligase complex, and Skp2 has also been implicated in regulating the proteosome-mediated degradation. Higher levels of Skp2 expression bode poorly for breast cancer. Therefore, Skp2 is a potential target for triple-negative breast cancers.
    In this study, the nature phytochemical – quercetin, that a kind of flavonoid, treatment to BT483 (ER-positive)、MDA-MB-231 (ER/Her2-negative) breast cancer cells resulted in significant inhibition of Skp2 expression and tumor growth in BT483 cells, but not showed in MDA-MB-231 cells.
    Therefore, Quercetin and Doxorubicin were used to cotreat in both cell lines, and found that inhibition of Skp2, p21, phospho-pRb, Cyclin A, Cyclin D1, CDK1 expression in MDA-MB-231 cells. Therefore, RT-PCR was used to detect that mRNA expression. We found that that quercetin and doxorubicin cotreatment-induced decrease in Skp2 protein levels involves a transcriptional mechanism in MDA-MB-231 cells, but involves a post-transcriptional mechanism in BT483 cells. Overall, the combination of quercetin and doxorubicin induced cell cycle arrest and apoptosis in breast cancer cells thought regulation of Skp2 expression. Thus, this study might promising for further research.

    (Part II) Abstract

    Cancers are usually treated with chemotherapy, radiation therapy and surgery. A cure for cancer is usually treated with surgery and then possibly with chemotherapy or radiation, or both. A multidisciplinary approach is preferable. However, chemotherapy or radiation not only killed the cancer cells, but also harmed to health cells causing side effects. Therefore, more patients used alternative therapies, such as herbal medicine or complementary and alternative medicine (CAM) to cure the diseases.
    Resent researches reported that some traditional Chinese herbal medicine have potential anticancer activity and cancer preventing ability, which flavonoid played the role of effective composition. Therefore, we wanted to detect the flavonoid variety of Chinese herbal medicine extracts by the HPLC analysis, and examine the anti-cancer activity by the MTT assay. 8 of 57 ethanol extract from traditional Chinese herbal medicines had the highest anti-cancer bioactivity, but that was detected with low levels of flavonoid compounds. Thus, we used four different extraction methods using water, ethyl acetate, chloroform, ethanol for extracting flavonoid compounds from Avicennia marina.
    We found that Avicennia marina ethyl acetate extract had the highest anticancer bioactivity and lowest toxicity, and had more flavonoid compounds compared to other extracts. Furthermore, several fractions of ethyl acetate extract purified by silica gel column chromatography, and want to find out novel potential anti-cancer compounds.

    Part I 1 中文摘要 2 英文摘要 4 第一章 前言 6 第二章 材料與方法 17 第三章 實驗結果 23 第四章 討論 34 第五章 參考文獻 40 第六章 實驗圖表 45 Part II 67 中文摘要 68 英文摘要 69 第一章 前言 70 第二章 材料與方法 75 第三章 實驗結果 81 第四章 討論 87 第五章 參考文獻 89 第六章 實驗圖表 91

    Part I
    1. IARC (2008) Section of Cancer Information.
    2. 衛生署 (2011) 民國100年衛生統計. In: 行政院衛生署, editor. 台北: 衛生署.
    3. 衛生署 (2009) 民國98年癌症登記報告. In: 行政院衛生署, editor. 台北: 國民健康局.
    4. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, et al. (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10: R65.
    5. Foekens JA, Atkins D, Zhang Y, Sweep FC, Harbeck N, et al. (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24: 1665-1671.
    6. Hu Z, Fan C, Oh DS, Marron JS, He X, et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7: 96.
    7. Huang E, Ishida S, Pittman J, Dressman H, Bild A, et al. (2003) Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003/05/20 ed. pp. 226-230.
    8. Sorlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40: 2667-2675.
    9. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, et al. (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13: 4429-4434.
    10. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, et al. (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110: 633-641.
    11. Davidovich S, Ben-Izhak O, Shapira M, Futerman B, Hershko DD (2008) Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res 10: R63.
    12. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222-231.
    13. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9: 153-166.
    14. Zhang H, Kobayashi R, Galaktionov K, Beach D (1995) p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82: 915-925.
    15. Willems AR, Goh T, Taylor L, Chernushevich I, Shevchenko A, et al. (1999) SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. Philos Trans R Soc Lond B Biol Sci 354: 1533-1550.
    16. Kong H, Leebens-Mack J, Ni W, dePamphilis CW, Ma H (2004) Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications. Mol Biol Evol 21: 117-128.
    17. Chan CH, Lee SW, Wang J, Lin HK (2010) Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal 10: 1001-1015.
    18. Weber G (2005) Down-regulation of increased signal transduction capacity in human cancer cells. Adv Enzyme Regul 45: 37-51.
    19. Lambert JD, Hong J, Yang GY, Liao J, Yang CS (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81: 284S-291S.
    20. Nemeth K, Piskula MK (2007) Food content, processing, absorption and metabolism of onion flavonoids. Crit Rev Food Sci Nutr 47: 397-409.
    21. Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11: 733-740.
    22. Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19: 670-686.
    23. Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JH, et al. (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29: 2538-2549.
    24. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45: 649-656.
    25. Tan C, Tasaka H, Yu KP, Murphy ML, Karnofsky DA (1967) Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer 20: 333-353.
    26. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, et al. (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48: 589-601.
    27. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783-792.
    28. Morabito A, Magnani E, Gion M, Sarmiento R, Capaccetti B, et al. (2003) Prognostic and predictive indicators in operable breast cancer. Clin Breast Cancer 3: 381-390.
    29. Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, et al. (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23: 4265-4274.
    30. Reeder-Hayes KE, Carey LA, Sikov WM (2010) Clinical trials in triple negative breast cancer. Breast Dis 32: 123-136.
    31. Lamoral-Theys D, Pottier L, Dufrasne F, Neve J, Dubois J, et al. (2010) Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr Med Chem 17: 812-825.
    32. Hu ML (2011) Dietary polyphenols as antioxidants and anticancer agents: more questions than answers. Chang Gung Med J 34: 449-460.
    33. Middleton E, Jr., Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673-751.
    34. Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, et al. (2005) The antitumor activities of flavonoids. In Vivo 19: 895-909.
    35. Mendoza EE, Burd R (2011) Quercetin as a systemic chemopreventative agent: structural and functional mechanisms. Mini Rev Med Chem 11: 1216-1221.
    36. Mense SM, Hei TK, Ganju RK, Bhat HK (2008) Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect 116: 426-433.
    37. Khan SI, Zhao J, Khan IA, Walker LA, Dasmahapatra AK (2011) Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reprod Biol Endocrinol 9: 91.
    38. Yokoi S, Yasui K, Iizasa T, Takahashi T, Fujisawa T, et al. (2003) Down-regulation of SKP2 induces apoptosis in lung-cancer cells. Cancer Sci 94: 344-349.
    39. Kitagawa M, Lee SH, McCormick F (2008) Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol Cell 29: 217-231.
    40. Gehm BD, McAndrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 94: 14138-14143.
    41. Lu R, Serrero G (1999) Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J Cell Physiol 179: 297-304.
    42. Bowers JL, Tyulmenkov VV, Jernigan SC, Klinge CM (2000) Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 141: 3657-3667.
    43. Balabhadrapathruni S, Thomas TJ, Yurkow EJ, Amenta PS, Thomas T (2000) Effects of genistein and structurally related phytoestrogens on cell cycle kinetics and apoptosis in MDA-MB-468 human breast cancer cells. Oncol Rep 7: 3-12.
    44. van der Woude H, Ter Veld MG, Jacobs N, van der Saag PT, Murk AJ, et al. (2005) The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol Nutr Food Res 49: 763-771.
    45. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, et al. (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278: 25752-25757.
    46. Yu ZK, Gervais JL, Zhang H (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A 95: 11324-11329.

    Part II
    1. Chen K, Plumb GW, Bennett RN, Bao Y (2005) Antioxidant activities of extracts from five anti-viral medicinal plants. J Ethnopharmacol 96: 201-205.
    2. Tan W, Lu J, Huang M, Li Y, Chen M, et al. (2011) Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 6: 27.
    3. Yang AK, He SM, Liu L, Liu JP, Wei MQ, et al. (2010) Herbal interactions with anticancer drugs: mechanistic and clinical considerations. Curr Med Chem 17: 1635-1678.
    4. Ravikumar S, Inbaneson SJ, Suganthi P, Venkatesan M, Ramu A (2011) Mangrove plants as a source of lead compounds for the development of new antiplasmodial drugs from South East coast of India. Parasitol Res 108: 1405-1410.
    5. Tsao JC, Zeltzer LK (2005) Complementary and Alternative Medicine Approaches for Pediatric Pain: A Review of the State-of-the-science. Evid Based Complement Alternat Med 2: 149-159.
    6. Sikorskii A, Wyatt GK, Siddiqi AE, Tamkus D (2011) Recruitment and early retention of women with advanced breast cancer in a complementary and alternative medicine trial. Evid Based Complement Alternat Med 2011: 734517.
    7. Wanchai A, Armer JM, Stewart BR (2010) Complementary and alternative medicine use among women with breast cancer: a systematic review. Clin J Oncol Nurs 14: E45-55.
    8. Fauvel MT, Taoubi K, Gleye J, Fouraste I (1993) Phenylpropanoid Glycosides from Avicennia marina. Planta Med 59: 387.
    9. Sharaf M, El-Ansari MA, Saleh NA (2000) New flavonoids from Avicennia marina. Fitoterapia 71: 274-277.
    10. Abeysinghe PD (2010) Antibacterial Activity of some Medicinal Mangroves against Antibiotic Resistant Pathogenic Bacteria. Indian J Pharm Sci 72: 167-172.
    11. Middleton E, Jr., Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673-751.
    12. Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, et al. (2005) The antitumor activities of flavonoids. In Vivo 19: 895-909.
    13. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, et al. (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48: 589-601.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE