簡易檢索 / 詳目顯示

研究生: 羅珮嘉
Lo, Pei-Chia
論文名稱: Al-Co-Cu與Al-Co-Ni準晶系統相平衡關係
Phase diagrams of Al-Co-Cu and Al-Co-Ni quasicrystalline materials
指導教授: 陳信文
Chen, Sinn-Wen
口試委員: 王朝弘
Wang, Chao-Hong
呂明生
Leu, Ming-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 142
中文關鍵詞: 準晶相圖鋁-鈷-銅鋁-鈷-鎳
外文關鍵詞: Quasicrystal, Phase diagram, Al-Co-Cu, Al-Co-Ni
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 準晶具有長程原子排序規律性,然而結構卻不具有平移對稱性。與結晶金屬材料相比,準晶具有低導電性、低導熱性、低摩擦係數、低潤濕性、與高硬度等特性,所以擁有不同應用的可能性。於Al-Co-Cu與Al-Co-Ni系統中已被證實存在準晶相。然而其準晶相的組成與相平衡關係,在文獻中存在著許多岐異。本研究將針對準晶相的組成範圍與相平衡關係進行探討,以進一步測定與計算含準晶相的Al-Co-Cu與Al-Co-Ni系統之相圖。
    相平衡的探討部分包括了實驗的測定、熱力學模型建置與相平衡計算。相平衡測定將藉由傳統相平衡樣品生成相分析方法,將配置好的Al-Co-Cu合金以電弧熔合的方式熔融後,選定溫度為900oC、800oC與600oC進行熱處理,以達到相平衡,而Al-Co-Ni系統僅完成900oC與部分600oC等溫橫截面圖。三元合金樣品進行金相、組成與XRD分析,以確認生成相之種類。熱力學模型建置與相平衡計算,將採用Calphad方法。
    Al-Co-Cu系統900oC與800oC的等溫橫截面圖有相似的結果,只有準晶相一個三元相存在,並具有一定的溶解度區間。在此兩個熱處理溫度中,與準晶相相互平衡的相包含β-Al(Co,Cu)、m-Al13Co4和Liquid,形成三個不同的三相共存區,其中β-Al(Co,Cu)和m-Al13Co4皆對Cu具有一定溶解度。而在600oC的等溫橫截面圖中,更增加了兩個三元相:Al7Cu2Co以及Al3(Cu,Co)2,並與m-Al13Co4、β-Al(Co,Cu)、Al9Co2和準晶相平衡,建構五個三相共存區,而準晶相的溶解度區間隨溫度下降到800oC而擴大,但溫度到達600oC時再次縮小。在相圖計算方面,也彙整Al-Co-Cu系統相關的二元參數,以line compound的方式描述準晶相,初步計算出Al-Co-Cu系統含準晶相於900oC與800oC的等溫橫截面圖。
    在Al-Co-Ni系統中,900oC的等溫橫截面圖有準晶相、Y1-Al13Co4和X相三個三元相,與Al9Co2、Al5Co2、Al3Ni2、Liquid建構六個三相區,目前仍有兩個與準晶相相關的三相區尚未完成配製。而準晶相的相區大小約為4at. %Al、15at. %Co以及16at. %Ni,而在600oC的等溫橫截面圖中,目前僅完成了一個準晶相、Al3Ni與Al3Ni2的三相區。


    Quasicrystal has long-range ordering, but it lacks translational symmetry. Comparing to crystalline metals, quasicrystals have low electric conductance, low thermal conductance, low friction coefficients, reduced wetting and high hardness, and thus could have very different applications. Quasicrystalline phase is found in the Al-Co-Cu and Al-Co-Ni ternary systems. However, their reported compositional homogeneity ranges and phase relationships in literatures are scattered and inconsistent. This study determine the compositional homogeneity ranges and phase relationships of the Al-Co-Cu and Al-Co-Ni quasicrystalline phases, and to determine and calculate the phase diagrams of the Al-Co-Cu ternary systems.
    Determination of phase diagrams includes experimental determination, thermodynamic modeling and phase diagrams calculation. Ternary Al-Co-Cu alloys were prepared with pure constituent elements by arc melting and equilibrated at 900oC, 800oC and 600oC. For the Al-Co-Ni system, the 900oC and partial 600oC isotheraml section are determined. Phase diagrams are determined by assembling together the results obtained from examination and analysis of the equilibrium phases of the equilibrated alloys. Thermodynamic modeling and phase diagrams calculation will be carried out using the Calphad (Calculation of Phase Diagram) approach.
    For the Al-Co-Cu system, the isothermal sections of 900oC and 800oC are similar. Quasicrystalline phase is the only ternary phase in this study.It has significant compositional homogeneity range, and the range decreases from 800oC to 900oC. The phase relationships of the Al-Co-Cu system at the Al-rich corner, mostly related with the quasicrystalline phase 800oC and 900oC are experimentally examined. There are three phases equilibrated with quasicrystalline phase, including. β-Al(Co,Cu)、m-Al13Co4 and liquid. In the isothermal section of 600oC, there are the other two ternary phases:Al7Cu2Co and Al3(Cu,Co)2. They equilibrate with m-Al13Co4, β-Al(Co,Cu), Al9Co2 and quasicrystalline phase to form five tie-triangles. However, the compositional homogeneity range of quasicrystalline phase decreases from 800oC to 600oC. The Calphad-type thermodynamic descriptions of the Al-Co-Cu with and without the quasicrystalline phase are developed.
    For the Al-Co-Ni system, the isothermal section of 900oC is determined. There are three ternary phases, including quasicrystalline phase, Y1-Al13Co4 and X phase. They equilibrate with Al9Co2, Al5Co2, Al3Ni2 and liquid phase to form six tie-triangles. The quasicrystalline phase in the Al-Co-Ni system also has significant compositional homogeneity range. In the isothermal section of 600 oC, only the tie-triangle of quasicrystalline phase, Al3Ni2 and Al3Ni is determined.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 XI 一、前言 1 二、文獻回顧 3 2-1材料系統相平衡 3 2-2二元系統相平衡 4 2-2-1 Al-Co二元相圖 4 2-2-2 Al-Cu二元相圖 9 2-2-3 Al-Ni二元相圖 13 2-2-4 Co-Cu二元相圖 16 2-2-5 Co-Ni二元相圖 18 2-3三元系統相平衡 20 2-3-1 Al-Co-Cu三元系統相圖 20 2-3-2 Al-Co-Cu三元準晶相的組成與生成 23 2-3-3 Al-Co-Ni三元系統相圖 24 2-3-4 Al-Co-Ni三元準晶相的組成與生成 26 三、研究方法 28 3-1 Al-Co-Cu 與Al-Co-Ni 三元系統相平衡實驗 28 3-1-1合金製備 28 3-1-2相平衡之熱處理 28 3-1-3金相分析 28 3-1-4 X光粉末繞射分析 29 四、結果與討論 30 4-1 Al-Co-Cu 三元系統900oC等溫橫截面圖 30 4-1-1準晶單相區 31 4-1-2準晶相+β-Al(Co,Cu)+m-Al13Co4三相區 35 4-1-3準晶相+β-Al(Co,Cu)兩相區 38 4-1-4準晶相+β-Al(Co,Cu)+Liquid三相區 40 4-1-5準晶相+Liquid兩相區 44 4-1-6準晶相+m-Al13Co4+Liquid三相區 47 4-1-7準晶相+m-Al13Co4兩相區 50 4-1-8 β-Al(Co,Cu)+Liquid兩相區 52 4-1-9 Al-Co-Cu 三元系統900oC等溫橫截面圖實驗結果 53 4-2 Al-Co-Cu三元系統800oC等溫橫截面圖 55 4-2-1準晶單相區 56 4-2-2準晶相+β-Al(Co,Cu)+m-Al13Co4三相區 58 4-2-3準晶相+β-Al(Co,Cu)兩相區 61 4-2-4準晶相+β-Al(Co,Cu)+Liquid三相區 64 4-2-5準晶相+Liquid兩相區 65 4-2-6準晶相+m-Al13Co4+Liquid三相區 68 4-2-7準晶相+m-Al13Co4兩相區 70 4-2-8 Al-Co-Cu 三元系統800oC等溫橫截面圖實驗結果 72 4-3 Al-Co-Cu 三元系統600oC等溫橫截面圖 73 4-3-1準晶相+β-Al(Co,Cu)+m-Al13Co4三相區 74 4-3-2準晶相+m-Al13Co4兩相區 78 4-3-3準晶相+m-Al13Co4+Al9Co2三相區 80 4-3-4準晶相+Al9Co2兩相區 83 4-3-5準晶相+Al9Co2+Al7Cu2Co三相區 85 4-3-6準晶相+Al7Cu2Co兩相區 88 4-3-7準晶相+Al7Cu2Co+Al3(Cu,Co)2三相區 90 4-3-8準晶相+ Al3(Cu,Co)2兩相區 93 4-3-9 Al-Co-Cu 三元系統600oC等溫橫截面圖實驗結果 95 4-4 Al-Co-Cu 三元系統計算相圖 96 4-5 Al-Co-Ni 三元系統900oC等溫橫截面圖 98 4-5-1準晶單相區 100 4-5-2 Y1-Al13Co4單相區 102 4-5-3準晶相+Al9Co2+Y1-Al13Co4 104 4-5-4準晶相+Al9Co2+Liquid 108 4-5-5準晶相+Liquid兩相區 110 4-5-6準晶相+Liquid+Al3Ni2三相區 115 4-5-7準晶相+Al3Ni2兩相區 116 4-5-8準晶相+X兩相區 120 4-5-9準晶相+X+Al5Co2三相區 122 4-5-10準晶相+Al5Co2兩相區 124 4-5-11準晶相+Y1-Al13Co4兩相區 126 4-5-12 Y1-Al13Co4+Al5Co2兩相區 127 4-5-13 Liquid+Al3Ni2兩相區 128 4-5-14 Al-Co-Ni 三元系統900oC等溫橫截面圖實驗結果 130 4-6 Al-Co-Ni 三元系統600oC等溫橫截面圖 131 4-6-1準晶相+Al3Ni兩相區 132 4-6-2準晶相+Al3Ni+Al3Ni2三相區 133 4-6-3 Al-Co-Ni 三元系統600oC等溫橫截面圖實驗結果 135 五、結論 137 六、參考文獻 139

    [1] D. Shechtmand, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry", Physics Review Letters, Vol. 53, pp. 1951-1954, (1984).
    [2] A. P. Tsai, "Icosahedral clusters, icosahedral order and stability of quasicrystals-a view of metallurgy", Science and Technology of Advanced Materials, Vol. 9, pp. 013008, (2008).
    [3] J. M. Dubois and R. Lifshitz, "Quasicrystals: diversity and complexity", Philosophical Magazine, Vol. 91, pp. 2971-2982, (2011).
    [4] A. P. Tsai, A. Inoue, and T. Masumoto, "Quasicrystals as a Hume-Rothery phase-an empirical approach", Tohoku University Report, Vol. 36, pp. 99-114, (1991).
    [5] F. S. Pierce, S. J. Poon, and Q. Guo, "Electron localization in metallic quasicrystals", Science, Vol. 261, pp. 737-739, (1993).
    [6] M. A. Chernikov, A. Bernasconi, C. Beeli, A. Schilling, and H. R. Ott, "Low-temperature magnetism in icosahedral A170Mn9P21", Physical Review B, Vol. 48, pp. 3058-3065, (1993).
    [7] M. A. Chernikov, A. Bernasconi, C. Beeli, and H. R. Ott, "Low-temperature conductivity and magnetoconductivity of icosahedral Al70Mn9Pd21", Europhysics Letters, Vol. 21, pp. 767-772, (1993).
    [8] A. Jha, "Solution thermodynamic behaviour of quasicrystalline-structure-forming alloy systems", Materials Science and Engineering A, Vol. 181-182, pp. 771-776, (1994).
    [9] A. P. Tsai, A. Inoue, and T. Masumoto, "Preparation of a new Al-Cu-Fe quasicrystal with large grain sizes by rapid solidification", Journal of Materials Science Letters, Vol. 6, pp. 1403-1405, (1987).
    [10] A. P. Tsai, A. Inoue, and T. Masumoto, "A stable quasicrystal in Al-Cu-Fe system", Japanese Journal of Applied Physics, Vol. 26, pp. L1505-L1507, (1987).
    [11] M. Miglierini and S. Nasu, "Magnetic, electronic and structural properties of icosahedral quasicrystals", Materials Transactions, JIM, Vol. 34, pp. 178-187, (1993).
    [12] E. Huttunen-Saarivirta, "Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review", Journal of Alloys and Compounds, Vol. 363, pp. 150-174, (2004).
    [13] B. Grushko, "A study of the Al-Cu-Co phase diagram and the solidification of alloys containing decagonal phase." Phase Transitions, Vol. 44, pp. 99-110, (1993).
    [14] J. Guo, E. Abe, T. J. Sato, and A. P. Tsai, "Production of single decagonal quasicrystal in Al-Co-Cu system", Japanese Journal of Applied Physics, Vol. 38, pp. L1049, (1999).
    [15] Y. Yokoyama, R. Note, A. Yamaguchi, and A. Inoue, "Preparation of a decagonal Al-Cu-Co single quasicrystal by the Czochralski method", Materials Transactions, JIM, Vol. 40, pp. 123-131, (1999).
    [16] W. Bogdanowicz, "Two-subgrain single quasicrystals Al-Cu-Co alloy growth and characterisation", Journal of Crystal Growth, Vol. 240, pp. 255-266, (2002).
    [17] S. Mi, B. Grushko, C. Dong, and K. Urban, "A study of the ternary phase diagrams of Al-Co with Cu, Ag and Au", Journal of Alloys and Compounds, Vol. 354, pp. 148-152, (2003).
    [18] P. Priputen, T. Y. Liu, I. Černičková, and D. Janičkovič, "Experimental study of Al-Co-Cu phase diagram in temperature range of 800-1050°C", Journal of Phase Equilibria and Diffusion, Vol. 34, pp. 425-429, (2013).
    [19] L. X. He, Y. K. Wu, and K. H. Kuo, "Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified Al65Cu20M15 (M= Mn, Fe, Co or Ni)", Journal of Materials Science Letters, Vol. 7, pp. 1284-1286, (1988).
    [20] A. P. Tsai, A. Inoue, and T. Masumoto, "Stable decagonal Al-Co-Ni and Al-Co-Cu quasicrystals" Materials Transactions, JIM, Vol. 30, pp. 463-473, (1989).
    [21] A. R. Kortan, F. A. Thiel, H. S. Chen, A. P. Tsai, and A. Inoue, "Stable tenfold faceted single-grain decagonal quasicrystals of Al65Cu15Co20", Physical Review B, Vol. 40, pp. 9397-9399, (1989).
    [22] X. L. Liu, G. Lindwall, T. Gheno,and Z. K. Liu, "Thermodynamic modeling of Al-Co-Cr, Al-Co-Ni, Co-Cr-Ni ternary systems towards a description for Al-Co-Cr-Ni", Calphad, Vol. 52, pp. 125-142, (2016).
    [23] T. Goedecke, M. Scheffer, R. Lueck, S. Ritsch, and C. Beeli, "Isothermal sections of phase equilibria in the Al-AlCo-AlNi system", Zeitschrift für Metallkunde, Vol. 89, pp. 687-698, (1998).
    [24] T. J. Sato, T. Hirano, and A. P. Tsai, "Single-crystal growth of the decagonal Al-Ni-Co quasicrystal", Journal of Crystal Growth, Vol. 191, pp. 545-552, (1998).
    [25] Y. Yokoyama, R. Note, A. P. Tsai, A. Inoue, "Production of single quasicrystals", Science Reports of the Research Institutes Tohoku University, Vol. 42, pp. 185-190, (1996).
    [26] S. Ritsch, C. Beeli, H. U. Nissen, T. GöDecke, M. Scheffer, and R. LüCK, "The existence regions of structural modifications in decagonal Al-Co-Ni", Philosophical Magazine Letters, Vol. 78, pp. 67-75, (1998).
    [27] K. Hiraga, T. Ohsuna, W. Sun, and K. Sugiyama, "Structural characteristics of Al-Co-Ni decagonal quasicrystals and crystalline approximants", Materials Transactions, Vol. 42, pp. 2354-2367, (2001).
    [28] J. M. Dubois, "New prospects from potential applications of quasicrystalline materials", Materials Science and Engineering: A, Vol. 294-296, pp. 4-9, (2000).
    [29] F. Cyrot-Lackmann, "Quasicrystals as potential candidates for thermoelectric materials", Materials Science and Engineering: A, Vol. 294-296, pp. 611-612, (2000).
    [30] A. Bilušić, D. Pavuna, and A. Smontara, "Figure of merit of quasicrystals: the case of Al-Cu-Fe", Vacuum, Vol. 61, pp. 345-348, (2001).
    [31] J. M. Dubois, S.S. Kang, and Y. Massiani, "Application of quasicrystalline alloys to surface coating of soft metals", Journal of Non-Crystalline Solids, Vol. 153-154, pp. 443-445, (1993).
    [32] J. M. Dubois, "Properties- and applications of quasicrystals and complex metallic alloys", The Royal Society of Chemistry, Vol. 41, pp. 6760-6777, (2012).
    [33] A.P. Tsai and M. Yoshimura, "Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol", Applied Catalysis A: General, Vol. 214, pp. 237–241, (2001).
    [34] M. Yoshimura and A.P. Tsai, "Quasicrystal application on catalyst", Journal of Alloys and Compounds, Vol. 432, pp. 451-454, (2002).
    [35] SGTE Unary Elements Database v.5, Scientific Group Thermodata Europe, (2009).
    [36] H. L. Lukas, S. G. Fries, and B. Sundman, "Computational thermodynamics", Cambridge University Press, Cambridge, (2007).
    [37] Pandat: A computational tool developed on the basis of the CALPHAD approach for multi-component phase diagram calculation, CompuTherm, (2014).
    [38] R. Schmid-Fetzer, D. Andersson, P. Y. Chevalier, L. Eleno, O. Fabrichnaya, U. R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, and M. Zinkevich, "Assessment techniques, database design and software facilities for thermodynamics and diffusion", Calphad, Vol. 31, pp. 38-52, (2007).
    [39] PanSolution database, a thermodynamic database for various binary alloy systems developed by CompuTherm LLC.
    [40] X. L. Ma and K. H. Kuo, "Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys", Metallurgical Transactions A, Vol. 23, pp. 1121-1128, (1992).
    [41] H. Okamoto, "Al-Co (Aluminum-Cobalt) ", Journal of Phase Equilibria, Vol. 17, pp. 367-367, (1996).
    [42] B. Grushko, R. Wittenberg, K. Bickmann and C. Freiburg, "The constitution of aluminum-cobalt alloys between Al5Co2 and Al9Co2", Journal of Alloys and Compounds, Vol. 233, pp. 279-287, (1996).
    [43] S. M. Liang, and R. Schmid-Fetzer, "Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system", Calphad, Vol. 51, pp. 252-260. (2015).
    [44] J. L. Murray, "Al-Cu (Aluminum-Copper)", Phase Diagrams of Binary Copper Alloys, pp. 18-42, (1994).
    [45] X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, "Phase equilibria in the Cu-rich portion of the Cu–Al binary system", Journal of Alloys and Compounds, Vol. 264, pp. 201-208, (1998).
    [46] Y. Aoki, S. Hayashi, and H. Komatsu, "Liquidus-and eutectic-temperature measurements of Al-rich alloys containing Cu and Si in a magnetic field of 3.5 T", Journal of Crystal Growth, Vol. 123, pp. 313-316, (1992).
    [47] W. Huang and Y. A. Chang, "A thermodynamic analysis of the Ni-Al system", Intermetallics, Vol. 6, pp. 487-498, (1998).
    [48] H. Okamoto, "Al-Ni (Aluminum-Nickel)", Journal of Phase Equilibria, Vol. 14, pp. 257-259, (1993).
    [49] M. Palumbo, S. Curiotto, and L. Battezzati, "Thermodynamic analysis of the stable and metastable Co-Cu and Co-Cu-Fe phase diagrams", Calphad, Vol. 30, pp. 171-178, (2006).
    [50] T. Nishizawa and K. Ishida, "The Co-Cu (Cobalt-Copper) system", Journal of Phase Equilibria, Vol. 5, pp. 161-165, (1984).
    [51] A. D. Taylor, "Lattice parameters of binary nickel cobalt alloys", Journal of the Institute of Metals, Vol. 77, pp. 585-594, (1950).
    [52] F. Lihl, "Die amalgam als hilfsmittel in der metallkundlichen forschung", Zeitschrift fur MetaIlkunde, Vol. 46, pp. 434-441, (1955).
    [53] S. U. Jen and Y. R. Huang, "Magnetization and transport properties of Co‐Ni‐Pd alloys", Journal of Applied Physics, Vol. 69, pp. 4674-4676, (1991).
    [54] T. Nishizawa and K. Ishida, "Co-Ni (Cobalt-Nickel)", Phase Diagrams of Binary Nickel Alloys, edited by P. Nash, ASM, pp. 69-74, (1991).
    [55] F. Guillermet, "Assessment of the thermodynamic properties of the Ni-Co system", Zeitschrift für Metallkunde, Vol. 78, pp. 639-647, (1987).

    QR CODE